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ABSTRACT Antarctic krill Euphausia superba distribution and abundance were estimated from 4 
acoustic surveys conducted in the vicinity of Elephant Island, Antarctica, from mid-January to mid- 
March 1992. The first and last surveys covered a 105 by 105 n mile study area centered on Elephant 
Island; the second and third surveys covered a 60 by 35 n mile area immediately north of Elephant 
Island. During the first survey, krill were distributed in a wide band extending along the north side of 
Elephant Island and wrapping around the western end; biomass was estimated to be 2.2 million metric 
tons (t). During the second survey, the highest densities of kriJl were over the shelf extending to the 
northwest from Elephant Island and including the Seal Island archipelago; high densities of krill also 
extended off the shelf from the northeast end of Elephant Island into deeper water. Biomass in the 
smaller survey area was estimated to be 0.7 d o n  t. Three weeks later, high krill densities were stil l  
apparent in the vicinity of Seal Island. but the area of high density previously mapped off the northeast 
end of Elephant Island had diminished considerably; biomass was estimated to be 0.4 million t. During 
the final survey. conducted 6 wk after the first survey, krill were mapped in reduced densities plimar- 
ily to the west of Elephant Island; biomass over the larger survey area had declined to 1.1 million t. 

INTRODUCTION 

Antarctic krill Euphausia superba is a key compo- 
nent in the pelagic marine ecosystem of the Southern 
Ocean (Laws 1985). As much as 300 million metric tons 
(t) of krill may be consumed annually by 30 d o n  
pinnipeds, 50 million sea birds and 300000 baleen 
whales (Miller & Hampton 1989). It is also the target 
of an international fishery (ca 400000 t annually). 
Although the harvest is less than 1 % of the annual krill 
production, catches tend to be localized near penguin 
and fur seal breeding colonies (Agnew in press). The 
effects of fishing, however, on the reproductive success 
of land-breeding krill predators has yet to be demon- 
strated. To do so, it will first be necessary to document 
the response of predator populations to features of the 
offshore prey field, and then to determine the effects of 
fishing on the distribution of prey. 

* Supported by the John and Fannie Hertz Foundation 

In response to international concern regarding 
unregulated development of fisheries in the Southern 
Ocean, the Convention of the Conservation of Ant- 
arctic Marine Living Resources (CCAMLR) was estab- 
lished as part of the Antarctic treaty system in 1982. A 
principal tenet of the convention is that the harvest of 
living resources shall be managed with the goal of 
presenring species diversity and stability of the entire 
marine ecosystem. Through its Scientific Committee, 
CCAMLR has encouraged member nations to establish 
long-term programs to monitor foraging behavior and 
reproductive success of selected krill predators (SC- 
CAMLR-IV 1985, SC-CAMLR-V 1986, Croxall et al. 
1988, Croxall 1989). More recently the Scientific 
Committee called for descriptions of the prey distribu- 
tion and abundance in the vicinity of predator monitor- 
ing sites and adopted a series of general principles to 
be used in the design of krill surveys (SC-CAMLR-X 
1991). It was recommended that: (1) acoustic data be 
collected along a series of regularly spaced parallel 
transects; (2) these data be used to map the distribution 
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of krill in the vicinity of a predator monitoring site 
and estimate their abundance; and (3) more focused 
surveys, consisting of randomly or regularly spaced 
parallel transects, be conducted in areas of highest krill 
density. 

A seasonal predator monitoring site has been main- 
tained at Seal Island, off the northwest coast of 
Elephant Island, Antarctica, since the austral summer 
of 1986/1987 (Bengtson et al. 1991, Boveng et al. 1991, 
Croll et al. 1991). An annual series of complementary 
shipboard observations, including acoustic surveys of 
zooplankton distribution and abundance, has been 
conducted in the waters surrounding Elephant Island 
(Anon. 1990, Rosenberg & Hewitt 1991, 1992). The 
acoustic surveys presented in this report are the latest 
in the series. 

Results from previous surveys suggest that the distri- 
bution, abundance and demography of krill in the 
Elephant Island area varies considerably both within 
and between years (Mathisen & Macaulay 1983, 
Kalinowski 1984, Macaulay et al. 1984, Kalinowski et 
al. 1985, Klindt 1986, Nast 1986, Siegel 198613, Brinton 
et al. 1987), and that these changes are due to immi- 
gration and emigration of krill rather than local popu- 
lation effects (Priddle 1988, Sahrhage et al. 1988). 
Spatial separation of adults, sub-adults and juveniles 
suggests that offshore waters west of the Antarctic 
Peninsula are krill spawning areas and that the neritic 
zone may be used as nursery grounds (Fevolden & 
George 1984, Quetin & Ross 1984, Siegel 1986a). 
Siegel (1988) proposed that adult krill migrate from the 
southwest (Bellingshausen Sea) into offshore waters 
during the summer, that sub-adults and juveniles drift 
to the northeast with the prevailing coastal current, 
and that the direction of these movements is reversed 
the autumn. Makaorov et al. (1988) and Nast et al. 
(1988) noted that Elephant Island lies in the path of a 
major outlet from the Weddell Sea, and that variations 
in the position of the Weddell-Scotia Confluence 
(WSC) may account for the variation in the numbers of 
krill accumulating in the Elephant Island area from the 
northern Weddell Sea. Stein (1986) described seasonal 
variations and meanders in the position of the WSC, 
which is apparent as a persistent hydrographic front 
north of Elephant Island. The meanders and eddies in 
the current flow along the front may be a factor favor- 
ing the accumulation of krill in the Elephant Island 
area, regardless of their origin (Everson 1984, Witek et 
al. 1988). 

Two objectives of our field research program are to: 
(1) relate the response of krill predators to changes in 
the availability of their prey; and (2)  relate these 
changes to biotic and abiotic aspects of the pelagic 
habitat. As such, there is interest in both the spatial 
patterns of krill distribution as well as their abundance. 

The analyses presented here were conducted to reveal 
features of krill distribution that persisted over rela- 
tively large scales (tens of km, and several days). 
Analyses of these data on finer scales will be reported 
elsewhere. 

METHODS 

Echo integration methods were used to map the 
distribution of krill and estimate its abundance in 
the vicinity of Elephant Island. Four surveys were 
conducted between 19 January and 11 March 1992 
(Fig. la ,  b). 
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Fig. 1. (a) Station pattern and acoushc transects for Surveys A 
and D. (b) Acoust~c transects for Surveys B and C 
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Surveys A and D were designed to describe meso- 
scale (tens to hundreds of km) features of water mass 
structure, phytoplankton biomass and productivity, 
and zooplankton constituents (including krill) in the 
area around Elephant Island. Surveys B and C were 
designed to map the micro-scale (one to tens of km) 
features of the distribution, density and abundance of 
krill immediately north of Elephant Island, within the 
foraging range of luiu predators breeding at Seal 
Island. 

Acoustic data were collected with a Simrad EK500 
echo sounder (Bodholt et al. 1989) configured with a 
120 kHz split-beam transducer. The transducer was 
deployed on a dead-weight towed body positioned 7 m 
below the water surface, and communicated with the 
echo sounder via 50 m of armored towing cable, a set 
of slip rings on the towing winch, and 75 m of shielded 
deck cable. The entire system (echo sounder, cables 
and winch) was calibrated before and after the cruise 
using standard sphere methods (Johannesson & 
Mitson 1983) in a 3 m diameter by 10 m deep tank 
filled with seawater chilled to 0.5 "C; calibration drift 
was less than 1.2 dB (Demer & Hewitt in press). 

Echo power levels for each ping were sampled 
approximately every 3 cm (25 kHz sampling rate) and 
adjustments were made for spherical spreading and 
absorption losses. This data set was averaged every 
0.5 m over depths ranging from 10 to 250 m, and the 
resulting set of mean volume backscattering strength 
measurements (sv) was passed to a computer for 
further processing and archiving. 

Echograms *ere generated from the subsampled 
data set and interpreted. The threshold volume 
backscattering strength was set at -81 dB (equivalent 
to approximately 0.1 krill m-3), and portions of the 
echogram were attributed to echoes from krill and 
non-krill (bottom return, system noise, other scatter- 
ers). For the purpose of generating distribution maps 
and biomass estimates, volume backscattering 
strength attributed to krill was integrated over 10 to 
250 m depth range (or 1 m above the bottom, if shal- 
lower than 250 m) and averaged over l n mile inter- 
vals. Ship's position was also recorded every 10 s and 
time-keyed to the acoustic data set. Version 2.6 of the 
'Bergen Integrator' software, co-developed by the 
Bergen Institute of Marine Research, the Christian 
Michelsen Institute, and Simrad (Knudsen 1990, Foote 
et al. 1991), was used as an aid in interpreting the 
echograms and archiving the results. 

Mean backscattering area per square n mile of sea 
surface (s,) for every 1 n mile of survey transect 
[m2(nmile)'] was thus calculated by the Bergen 
Integrator software as: 

r=250 

s, = 4xrO2 1852' I svdz (1) 
z =  10 

where sv = 0 if 10 log(sv) S -81 dB; z = depth; and ro = 
1 m is the reference range for backscattering strength. 

By assuming that measurements of sv represent the 
linear sum of echoes from individual animals within 
the sample volume (MacLennan & Simmonds 1992), 
the numerical density of krill (number per unit area of 
sea surface) can be estimated by dividing sA by the 
backscattering cross-sectional area (IS, mZ) of a single 
krill. Biomass density of krill (p, g m-') can be esti- 
mated by multiplying the numerical density by the 
weight of a single krill. 

Both the backscattering cross-sectional area and the 
weight of krill are non-linear functions of body length. 
We used the definition of krill target strength (TS, dB) 
as a function of standard length (1) as proposed by 
Greene et al. (1991) and adopted by the CCAMLR 
Working Group on Krill (SC-CAMLR-X 1991) (see also 
'Discussion'): 

(2) TS = -127.45 + 34.851Og-,o(1) 

where 1 = standard length of krill (mm). The corre- 
sponding backscattering cross-sectional area of krill 
(IS) is: 

(3) cT = 4xr0210-12.?45 1 3 4 8 5  

The relationship of krill wet wt (w, mg) as a function of 
standard length was taken from Siegel (1986a) for 
individuals caught in March: 

w = 0.00193 l 3  325 (4) 

p = = 0.2491'0.16~A (5) 
Thus: 

Krill were sampled directly with a 6 ft (ca 1.8 m) 
Isaacs-Kidd midwater trawl (IKMT, Devereux 1953), 
outfitted with a net made of 505 pm mesh nytex, and 
fished obliquely from approximately 170 m depth to 
the surface (Loeb & Siegel in press). Net tows were 
made at regularly-spaced stations on Surveys A and D 
(Fig. la) without regard to time of day; no net tows 
were conducted during Surveys B and C. The fre- 
quency distribution of krill standard length was used to 
calculate p as follows: 

" 
p = 0.249 f, ( l i ) - O  l6 sA (6) 

where fi = the relative frequency of krill of standard 
length l , ,  such that xy=lfi = 1, where i refers to the 
ith length class and n is the number of length classes. 

A composite frequency distribution of krill standard 
length was calculated from all net tows conducted dur- 
ing Survey A and used to estimate densities on Surveys 
A and B; similarly a composite frequency distribution 
was calculated from all net tows conducted during 
Survey D and used to estimate densities on SUNey.5 C 

, = I  
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and D. The resulting data sets, indexed by time and 
ship's position, were gridded and contoured for each of 
the 4 surveys. 

Following the method proposed by Hampton (1987) 
and Jolly & Hampton (1990), each transect was consid- 
ered a single sample of biomass density. The entire 
survey area was treated as a single stratum.. Mean bio- 
mass density (p) was calculated as a weighted mean: 

c n, 
1 = 1  

where p, = mean density on the ith transect; n, = no. of 
1 n mile averagmg-intervals on the ith transect: and 
N = no. of transects. Following Jolly & Hampton (1990) 
and Simmonds et al. (1991), variance of p was esti- 
mated as: 

Biomass was estimated as: 

B = A(P) (9) 

where A = total survey area (m2), Variance of the bio- 
mass estimate was calculated as: 

var(B) = Azvar(p) (10) 

and the coefficient of variation as: 

,'var (B) cv = - 
B 

The above expression only reflects the sampling vari- 
ance (Simmonds et al. 1991). Other potential sources of 
errors and biases are outlined in the 'Discussion'. 

RESULTS 

In late January, krill were distributed in a broad 
band which extended across the north side of Elephant 
Island and wrapped around its western end (Survey A, 
Fig. 2). During a higher resolution survey, conducted 
during the first week in February, highest krill densi- 
ties were mapped over the shelf extending to the 
northwest from Elephant Island and including the Seal 
Island archipelago. High densities of krill also ex- 
tended off the shelf from the northeast end of Elephant 
Island into deeper water (Survey B, Fig. 3). 

A similar survey was conducted 3 wk later during the 
last week in February. Although high krill densities 
were st i l l  apparent in the vicinity of Seal Island, the 
area of high density previously mapped off the north- 
east end of Elephant Island had diminished consider- 

ably (Survey C, Fig. 4).  A final survey, similar in areal 
coverage and sampling intensity to the first survey, 
was conducted during the first 10 d of March, 6 wk 
after Survey A. Both the extent and density of krill 
were greatly reduced; areas of highest densities were 
mapped to the west of Elephant Island (Survey D, 
Fig. 5). 

The frequency distribution of krill standard length 
was bimodal throughout the study period [Fig. 6). Both 
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Fig. 4. Euphausia superba. Survey C, small- 
area survey, 25 to 28 February 1992. Krill 
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Fig 5 Euphausia superba Survey D. large- 
area survey. 29 February to 10 March 1992 
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reproductively mature and immature adult krill con- 
tributed to the mode at 44 to 45 mm; juvenile krill con- 
stituted the mode at approximately 28 mm (Loeb & 
Siegel in press). Relative to Survey A, greater propor- 
tions of intermediate-sized krill and reduced propor- 
tions of smaller sizes were caught during Survey D. 
The size frequency obtained during Survey A was 
used to calculate knll densities on Surveys A and B, 
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Fig. 6. Euphausia superba. Frequency distributions of krill 
standard length collected during (a) Survey A and (b) Survey 

B. From Loeb & Siegel (in press) 

and the size frequency of krill obtained during Survey 
D was used to calculate krill densities on Surveys C 
and D. 

During the first large-area survey (Survey A) krill 
abundance was estimated at 2.2 million t, CV = 16 %. 
Six weeks later (Survey D) krill abundance over the 
same area was estimated to be 1.1 million t, CV = 9 %. 
Estimated abundance during the first small-area 
survey (Survey B) was 0.7 million t, CV = 22 YO. and 
during the second small-area survey (Survey C) it was 
0.4 million t, CV = 23 % (Table 1). 

DISCUSSION 

Several sources of error associated with the echo in- 
tegration method can be identified. These include both 
random errors and systematic biases associated with 
the definition of individual krill target strength, esti- 
mating the size distribution of krill in the surveyed 
population, species identification, estimating the 
amount of undetected krill, assumption of a linear 
addition of echoes from individual M I  in the sample 
volume, estimating system gain and absorption loss, 
and estimating survey sampling error. 
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Table 1. Euphausia superba. Abundance estimates for Surveys A, B. C and D. n,: no. of 1 n d e  averaging mtervals on the ith 
transect; s,: mean backscattering area per n mile' of sea surface; p: mean biomass density; Var (p): variance of ir; CV: coefficient 

of vanahon 

Survey A Survey B 
n, n, SA 

Survey C Survey D 
n, SA n, SA 

Transect 1 
Transect 2 
Transect 3 
Transect 4 
Transect 5 
Transect 6 
Transect 7 
Transect 8 
Transect 9 
Transect 10 
Transect 11 
Transect 12 

En, 
Weighted mean 
Weighted vanance 

" 
0249Cj,(1,)-0'6 

,=1 

P@ m-') 
var(Fi) 
Survey area (n d e ' )  
Survey area (A, x lo6  m') 
Biomass (B, x lo3 t) 
cv (Yo) 

113 386.3 
95 374.5 

108 814.9 
112 590.6 
127 451.1 
137 473.4 
115 231.5 
117 178.9 
- - 
- - 
- - 
- - 

924 

436.2 
4 722.5 

0.1403 

61.20 
92.96 
10575 
36271 
2 220 
15.75 

30 714.9 
37 188.6 
35 979.5 
35 470.7 
27 386.9 
24 590.0 
31 918.2 
28 67.8 
37 1220.0 
35 1990.3 
33 353.5 
34 529.6 

386 

721.8 
25 723.2 

0.1403 

101.27 
506.34 
2 100 
7 203 

129 
22.22 

47 725.9 
35 512.7 
38 160.5 
37 1155.2 
29 648.0 
25 55.2 
29 34.9 
37 400.5 
32 219.9 
37 337.5 
32 144.6 
38 374.1 

416 

421.3 
9 056.1 

0.1398 

58.90 
176.99 
2 100 
7 203 

424 
22.59 

110 264.0 
98 254.8 

103 223.1 
106 332.9 
110 150.0 
133 169.9 
109 166.6 
116 192.8 
116 174.4 
- - 
- - 
- - 

1001 

211.9 
383.9 

0.1398 

29.63 
7.50 

10 575 
36271 

1075 
9.25 

Foote et al. (1990) noted that abundance estimates of 
krill using acoustics were often much less than those 
obtained from estimates of predator demand. They 
suspected large errors associated with the definition of 
individual krill target strength, and ensonified live kriU 
aggregations in a cage at 120 kHz. The mean single- 
animal target strength of 30 to 39 mm krill was inferred 
from the aggregation backscatter to range from -81 to 
-74 dB. Everson et al. (1990) noted that these values 
were considerably lower that those calculated from 
previously used equations relating target strength to 
the physical size of krill (BIOMASS 1986). and that the 
use of these equations resulted in gross underesti- 
mates of krill abundance. Until recently, a fluid sphere 
model was used to characterize the target strength of 
krill. Wiebe et al. (1990) ensonified several species of 
live, but tethered, zooplankton at 420 W z  and con- 
cluded that sound scatter from elongated animals is 
better described by a bent cylinder model (Stanton 
19891, and that target strength is proportional to the 
volume of an animal rather than its cross-sectional 
area. Using these data, Greene et al. (1991) premcted 
krill target strength at several frequencies and over a 
range of body lengths. The Foote et al. (1990) data 
agreed with the Greene et al. (1991) prediction. 
Further corroboration was offered by Hewitt & Demer 

(1991) who reported a set of in situ target strength 
measurements using a 120 kHz split-beam transducer. 
For krill with an estimated mean length of 47.4 mm. 
the modal target strength was -69 dB, within 1 dB of 
the prediction by Greene et al. (1991). The CCAMLR 
Working Group on Krill reviewed these and several 
unpublished studies on krill target strength and 
concluded that 'a growing body of evidence suggests 
that the BIOMASS definition of target strength as a 
function of body length at 120 kHz consistently over- 
estimates target strength', and that 'measurements 
over a range of animal lengths imply a stronger depen- 
dence of target strength on length than that predicted 
by the BIOMASS definition' (SC-CAMLR-X 1991). 
Although the Greene et al. (1991) equation is a cur- 
rently accepted estimator of krill target strength, body 
shape, orientation and physical condition also affect 
target strength (Stanton 1989). The range of variation 
of these parameters should be measured under condi- 
tions when the krill would be surveyed, and used in 
theoretical models to predict the distribution of indi- 
vidual target strengths that would be expected from a 
natural aggregahon of krill (SC-CAMLR-X 1991). 

Estimates of krill biomass density are insensitive to 
minor variations in the frequency distribution of 
length. This is because the number of krill per kg 
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Table 2. Euphausia superba. Krill weight, numbers per kg. target strength (TS)  per individual, TS per kg, backscattering cross- 
section per kg, and kg per backscattering cross-section by standard length 

A B C D E F G 
Length Wet wt No. of TS ind:' TS kg-' Backscattering kg krill m-' 

(dB) cross-sectional area backscattering 
(mm) (SI (dB) of 1 kg krill (mZ kg-') area (kg m-') 

krill kg-' 

20 0.0409 24463 -82.11 -38.22 0.001892 529 
25 0.0858 11649 -78.73 -38.07 0.001960 510 
30 0.1574 6354 -75.97 -37.94 0.002018 495 
35 0.2628 3 806 -73.64 -37.84 0.002069 483 
40 0.4096 2441 -71.62 -37.74 0.0021 13 473 
45 0.6060 1650 -69.84 -37.66 0.002154 464 
50 0.8603 1162 -68.24 -37.59 0.002190 457 
55 1.1810 847 -66.80 -37.52 0.002224 450 
60 1.5773 634 -65.48 -37.46 0.002255 443 

B = (0.00193 A3.325J/1000 
C =  1000/B E = lOlog(C) + D G = 1/E 

D = -127.45 - 34.8510g(A) F = 4n 10E"' 

decreases exponentially with increasing length at ap- 
proximately the same rate as the backscattering cross- 
sectional area of a single M1 increases with increasing 
length. The dependence of weight, numbers per kg, 
target strength per individual, target strength per kg, 
backscattering cross-sectional area per kg and kg per 
m2 of backscattering area on standard length are illus- 
trated in Table 2 and Fig. ?a to e. As can be seen from 
Table 2, the factor relating krill biomass to backscat- 
tering area vanes from 529 to 443 kg m-' of back- 
scattering area over a range of krill lengths from 20 to 
60 mm. This implies that mean length may be used to 
calculate biomass densities without introducing sub- 
stantial errors. If, on the other hand, numerical densi- 
ties are desired (e.g. for studies of foraging behavior) 
then body length is critical to accurate estimates. 

Species identification is problematic. Several high- 
resolution Multiple Opening-Closing Net and Envir- 
onmental Sampling System (MOCNESS) tows were 
aimed at specific echogram types. Swarming krill 
appear quite different from the other major sources of 
zooplankton sound scattering (other euphausids, pri- 
marily Thysanoessa macrura; amphipods, primarily 
Them'sto gaudichaudii; copepods; and salps): the 
edges of krill swarms, although irregular, are very 
sharp and distinct, and the volume backscattering 
strength of krill aggregations is much higher than that 
for other taxa. Although the total number of non-krill 
zooplankton caught in the IKMT tows exceeded that of 

Fig. 7.  Euphausia superba. Dependence of (a) krill weight, 
(b) numbers per kg. (c) target strength per individual, (d) tar- 
get strength per kg, and (e) kg per backscattemg cross- 

section. on standard length 
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krill (Loeb et al. 1992). their aggregate backscattering 
strength, estimated by ass-g that target strength of 
elongated zooplankton is proportional to the cube of 
their length (Wiebe et al. 1990). was less than 10 % of 
that from krill over the survey area. Backscattering 
from krill and non-krill zooplankton were lumped to- 
gether and biomass estimates are thus biased slightly 
upward. Although Salpa thompsoni were the most 
abundant non-krill zooplankton, they were not in- 
cluded in the above calculation because as gelatinous 
tunicates they are unlike any taxa included in Wiebe et 
al. (1990) experiments. Because they are mostly water 
and lack a strong density contrast, salps are probably 
not efficient sound scatterers. Although the numerical 
density of salps was higher than that of krill in IKMT 
samples collected in the southern and eastern portions 
of the large-area surveys, the integrated backscatter- 
ing strength in these areas was low. 

Krill within 10 m of the surface, below 250 m, and 
more dispersed than a threshold density of approxi- 
mately 0.1 krill m-3 were not detected and thus not 
included in the biomass estimates. Survey effort was 
not adjusted for the time of day so that the amount of 
undetected krill could have vaned with diel changes in 
krill behavior. Ship's position was independent of time 
of day, however, and any diel effects should be random 
error added to the estimate of systematic bias caused 
by undetected krill. There were occasions when sur- 
face swarms were observed during daylight hours; and 
krill were sometimes entrained in the ship's cooling 
water intake during the day, although more frequently 
at night. The amount of krill in the upper 10 m, how- 
ever, can be a substantial, but unknown, portion of that 
in the entire water column, and a potentially large 
source of error. This region could be investigated by 
using side-looking and up-looking transducers. In 
their review, Miller & Hampton (1989) note that krill 
are principally found in the upper 150 m of the water 
column. The lack of evldence to the contrary, however, 
does not preclude substantial numbers of krill below 
250 m depth. Lower frequency echo sounders, acoustic 
transducers mounted on remote vehicles, and/or 
deeper fishing nets could be used to detect kriU deeper 
than 250 m. The maximum density of undetected dis- 
persed krill, assuming a density of 0.1 krill m-3 
throughout the upper 250 m and an average individual 
weight of 0.5 g, is less than 10 '70 of the average density 
of the 4 surveys. It is very unlikely that undetected krill 
would be present throughout the water column at 
just below the threshold density, and thus errors due 
to non-detection of dispersed krill are considered 
negligible. 

Foote (1983) demonstrated that it was reasonable to 
assume that volume backscattering strength from fish 
schools was the result of incoherent addition of echoes 

from individual fish within the sample volume. The lin- 
ear relationship between backscattering strength and 
density breaks down, however, at very high animal 
densities due to the effects of shadowing and multiple 
scattering (MacLennan & Simmonds 1992). Although 
peak sv values indicated krill densities on the order of 
lo3 ind. m-3, shadowing may have occurred, particu- 
lary with thick swarms and layers. Evidence of multi- 
ple scattering was observed occasionally in association 
with very dense swarms. This ringing, observed as 
diffuse echoes below the more solid return from the 
swarm, was included in the integration with the expec- 
tation that multiple scattering helps offset the effect of 
shadowing (Stanton 1983). 

Calibration inaccuracies can also contribute to the 
error in integration survey results. Foote & MacLennan 
(1984) stated that precision calibration to within 0.5 dB 
is possible by using standard calibration spheres. This 
translates to a 1 dB error in estimating mean target 
strength. Robinson (1984) noted that the acoustic 
absorption coefficient at 120 kHz is not known better 
than t 0.5 dB kn- ' .  This implies that, at a range of 
50 m, calibration accuracy can be no better than ? 0.5 
dB due to this parameter alone. Our calibration exper- 
iments using various pulse lengths and sphere maten- 
als indicated system gain variations of as much as 1.2 
and 1.5 dB. respectively (Demer & Hewitt in press). 

Application of Jolly & Hampton's (1990) formula for 
estimating variance is valid only if the parallel survey 
transects are randomly spaced. Because the intent was 
to derive distribution maps as well as estimate abun- 
dance, transects were regularly spaced and Jolly & 
Hampton's expression for variance was used as an ap- 
proximation. As such it is an underestimate of the true 
survey sampling variance. 

The range of estimates of krill abundance in the 
Elephant Island area reported here is within the range 
of previously reported values. Macaulay et al. (1984) 
estimated that 2.1 million t of krill were aggregated in 
a large swarm located over the shelf break north of 
Elephant Island. Acoustic surveys conducted by 
Macaulay in the austral summers of 1981, 1984, 1987, 
1988 and 1989, when normalized to a survey area of 
5055 n mile2 centered on Elephant Island. resulted in 
biomass estimates of 0.8, 0.3, 0.7, 0.5 and 0.9 million t 
respectively (Macaulay unpubl.). Macaulay (pers. 
comm.) assumed the target strength of 40 to 45 mm 
krill to be -35.93 dB kg-'; incorporating the more re- 
cent definition of krill target strength (-3?.?0 dB kg-', 
Table 2) results in adjusted biomass estimates of 1.2, 
0.4, 1.0, 0.7 and 1.4 million t. Klindt (1986) reported 
biomass estimates from combined acoustic and net 
surveys conducted in the Elephant Island area during 
1983, 1984 and 1985 of 0.05, 0.4 and 0.02 million t re- 
spectively. Klindt used the BIOMASS (1984) definition 
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Table 3 Euphausia superba. Acoushc estimates of knll biomass 111 the Elephant Island area 
~ 

Year Month Survey area Biomass Ad] biomass Source 
(n &e2) (X 103 t) (X 103 t) 

1981 March 5 055 79oa 1187 Macaulay (unpubl ) 
1983 October/November 10 507 52 480 Khndt (1986) 
1984 March 5 055 260 390 Macaulay (unpubl ) 
1984 h-OvembedDecember 10 106 380 2 200 m n d t  (1986) 

Klmdt (1986) 1985 MarchIApnl 9 283 16 81 
1987 January 5 055 660 992 Macaulay (unpubl ) 
1988 January 5 055 480 721 Macaulay (unpubl ) 
1989 February 5 055 950 a 1428 Macaulay (unpubl ) 
1990 Early January 11 925 465 699 Amos et a1 (1990) 

Late January 10 575 1132 1 702 Amos et a1 (1990) 
Early February 11 925 2 133 3 206 Amos et a1 (1990) 
Late February 11 925 2 475 3 720 Amos et a1 (1990) 

1991 Late January 12 675 689 1036 Macaulay & Matlnsen (1991) 
Late Feb - early Mar 12 525 822 1236 Macaulay & Mathisen (1991) 

This report 
Early March 10 575 1075 1015 This report 

1992 Late January 10575 2 220 2 220 

"Excluding biomass of observed superswarms 

of target strength adjusted to 150 kHz and the length 
frequency distributions reported by Siege1 (1986a). 
Klindt's biomass estimates may be adjusted by a factor 
corresponding to the difference in target strength at 
120 kHz using the modal knll lengths for each of the 
surveys (30,41 and 45 mm); the corresponding factors 
(9.2, 5.8 and 4.9) result in adjusted biomass estimates 
of 0.5, 2.2 and 0.1 million t. Four surveys were con- 
ducted by Macaulay in the Elephant Island area during 
January and February 1990 (Amos et al. 1990). 
Estimated krill biomass increased from the first survey 
through the fourth survey (0.5, 1.1, 2.1 and 2.4 million 
t). Two surveys were conducted by Macaulay between 
mid-January and mid-February 1991 (Macaulay & 
Mathisen 1991). Estimated krill biomass increased 
from 0.7 to 0.8 million t. For the 1990 and 1991 surveys, 
Macaulay (pers. comm.) again used -35.93 dB kg-' to 
scale his biomass estimates; adjusted biomass esti- 
mates are 0.7, 1.3, 3.2 and 3.7 million t for 1990, and 
1.0 and 1.2 million t for 1991. Results from the above 
surveys are summarized in Table 3. 

Krill abundance in the Elephant Island area de- 
creased over the 2 mo observational period of mid- 
January to mid-March 1992. Krill abundance de- 
creased approximately 2-fold between the 2 large-area 
surveys, Surveys A and D, conducted in the waters 
surrounding Elephant Island. Krill abundance also 
decreased approximately 2-fold between the 2 small- 
area surveys conducted to the north of Elephant Island, 
Surveys B and C. This was in marked contrast to the 
results from surveys conducted in 1990 and 1991 when 
krill abundance increased from mid-January to mid- 
March. 

Over the last 3 yr, several measures of reproductive 
success of chinstrap penguins Pygoscelis aniarctica at 
Seal Island varied in concert with estimates of krill bio- 
mass: moderately high in 1990, very low in 1991, and 
very high in 1992 (D. A. Croll pers. comm.). Seasonal 
variations in the availability of krill to predators may 
also be important. Although average abundances of 
krill during the 1990 and 1992 austral summer were 
similar, the seasonal t i g  of peak abundance was 
quite different - late in 1990, early in 1992. Repro- 
ductive success of chinstrap penguins was high in 1992 
relative to 1990. Good breeding success early in the 
1992 season, however, may be countered by the lack of 
krill late in the season when local demand for prey by 
newly fledged chicks and adults about to molt may be 
at its highest (Croll in press). 
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