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Abstract: Efficient allocation of funds for erosion control on logging roads depends on information about 
current and potential future erosion on different road segments.  Acquiring this information is typically ex-
pensive, and may make no immediate contribution to erosion control.  Thus, managers face a trade-off be-
tween spending funds on information gathering versus on actual erosion control measures.  Here, we de-
velop a framework for examining this trade-off when current erosion, future erosion, and the efficacy of 
erosion control measures are all uncertain.  Specifically, casting the manager’s problem of allocating funds 
between erosion control and erosion monitoring as a partially observable Markov decision process 
(POMDP) allows us to identify the conditions under which costly estimates of erosion levels are worth ob-
taining as part of an adaptive erosion control program, and, in contrast, under what conditions the better 
strategy is to skip data acquisition and proceed directly to erosion control treatments.  We demonstrate the 
POMDP approach through an application to a stylized road erosion control problem. 
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Introduction 

Sediment loading from logging roads impairs water 
quality and habitat conditions in many Pacific coastal 
rivers and streams.  In this paper, we address the 
question of whether logging road erosion monitoring 
is worth the time and expense, given that we could 
decline to monitor in favor of either applying reha-
bilitative treatments immediately, without bothering 
to collect erosion data, or deferring the decision to 
implement road treatment or monitoring schemes (the 
more common practice).  We examine this question 
within the framework of a partially observable 
Markov decision process (POMDP), which is well-
suited to this purpose for at least two reasons.  First, 
surface erosion is by its nature difficult to assess, 
even with special equipment, making the partial ob-
servability approach very apt.  Second, logging road 
erosion control can be meaningfully represented in 
terms of a few states and actions, and the costs of 
these actions can be reasonably well estimated.  Our 
model assumes the land manager wants to minimize 
long-run discounted total cost and will engage in 
monitoring only if it’s expected to help with long-
term performance.  The model’s purpose is to help 
the land manager decide when monitoring is worth 
the expense.  Here, we apply the model to a single 
road segment, but it could also be applied to an entire 
watershed. 
 
While there seems to be no consensus on a definition 
of ‘adaptive management,’ a necessary condition for 
management to be adaptive is that it account for the 
arrival of new information.  Within the natural re-
source management literature, most work has focused 

on ‘passive adaptive management,’ in which new 
information is incorporated into decision making as it 
becomes available.  A more difficult approach is that 
of ‘active adaptive management,’ in which new in-
formation is sought optimally: the manager considers 
the short-term cost of information gathering vs. the 
potential long-term benefits, and decides whether the 
costly information is worth having1 .  
 
Markov decision processes (MDPs), when solved 
with the techniques of stochastic dynamic program-
ming, yield a mapping from the system state into an 
optimal policy, and may be thought of as a formal 
representation of adaptive management.  However, 
MDPs assume that state variables are observed per-
fectly, an assumption that clearly does not hold in 
many natural resource management problems: animal 
populations, mineral reserves, and water quality, at 
least in many situations, cannot be known with cer-
tainty, and even developing good estimates is gener-
ally expensive and time-consuming.    
 
The theory of partially observable Markov decisions 
processes (POMDPs) was developed in response to 
this shortcoming of MDPs, but no numerical algo-
rithms existed for POMDP solution until Sondik 
(1971).  Despite a steady stream of improvements in 
both exact and heuristic solution techniques, most 
applied work in dynamic optimization (including 
control engineering, economics, and behavioral ecol-
ogy) has continued to rely on MDPs built around 

                                                 
1 Though these ideas are taken from the control engineering 
literature, the most thorough treatment in a natural resource 
management context seems to be Walters (1986). 
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certainty-equivalent measures, rather than facing the 
numerical difficulties inherent in POMDPs.  These 
difficulties are two-fold.  First, POMDPs inherit from 
MDPs the well-known ‘curse of dimensionality,’ by 
which is meant that solution times explode as the 
number of admissible states and the length of the 
time horizon increase.  Second, POMDPs are funda-
mentally Bayesian decision processes, in the sense 
that an agent’s beliefs about state variables become 
the basis for the optimal decision rule.  The agent 
may change these beliefs, via Bayes’ Theorem, when 
new information becomes available.   While this is 
conceptually appealing, the practical result is that we 
move from a world with finite MDP states to one 
with an infinite number of possible belief states, since 
an agent may come to have any set of beliefs, de-
pending on how their prior beliefs and new informa-
tion combine to yield updated beliefs.  Thus, for 
POMDPs we can no longer use the standard tech-
niques of stochastic dynamic programming as pre-
sented in, for example, Bertsekas (2000). 
 
The difficulty in implementing POMDP solutions is a 
strong incentive to assume certainty-equivalence and 
stay within the relatively comfortable confines of 
MDPs.  However, the substantial uncertainty inherent 
in many natural resource management problems 
really demands a better response.  In our own work 
on salmon habitat management, for example, we have 
found that the amount of sediment loading from log-
ging roads is highly uncertain, that simulation models 
do not inspire a great deal of confidence among man-
agers, and that ascertaining empirical estimates of 
sediment loading requires a commitment of at least 
several years and tens of thousands of dollars.  How 
can managers reasonably approach sediment control 
decisions when they don’t even know (either at the 
watershed level or at the operational level of a par-
ticular road segment) the magnitude of the problem?  
More specifically, how much time and money should 
they sink into developing empirical estimates of 
sediment loading rates, when that time and money 
could be spent instead on road upgrades and decom-
missioning?   
 
Questions of the same form arise anytime we con-
sider resource management under uncertainty with an 
opportunity to invest in learning, which will gener-
ally mean incurring some short-term cost to achieve 
greater overall long-term net benefit.  We believe the 
POMDP is the best existing tool for addressing such 
questions.  Rather than make that argument directly, 
however, here we offer an expository example that 
we hope shows how the POMDP is precisely the tool 
needed to address the question of when road erosion 
monitoring programs are worth their costs.   We em-

phasize that this model is for expository purposes 
only: while we believe the parameter values in our 
model are quite reasonable, they are not derived from 
field data.  The results reported below relate only to 
this parameter set and no general lessons can be 
drawn from these results alone. 
 
While our focus here is on logging road erosion, the 
question of whether to monitor or not is of considera-
bly broader interest in natural resource management.  
In the context of Pacific coastal watersheds, various 
federal, state, and local governments, as well NGOs 
and community groups, are either monitoring or de-
veloping plans to monitor stream conditions, espe-
cially as they relate to fish habitat suitability.  All this 
monitoring seems unobjectionable from a conser-
vation point of view, and a lot of it is actually quite 
fun, so it might seem ungenerous to ask whether it’s 
justified.  However, even given the high level of en-
thusiasm and public funding for fish habitat monitor-
ing, only a small fraction of streams can be moni-
tored, and those only for a few habitat indicators and 
for a limited period of time.  Given these practical 
constraints on monitoring, our question is an impor-
tant one if we’re serious about seeing that conserva-
tion efforts result in as much conservation benefit as 
possible. 

Model 

We begin with some general notes on POMDP mod-
els and then construct a stylized model that illustrates 
the use of POMDP for analyzing the desirability of 
an erosion monitoring program on a particular road 
segment. 
 
The traditional MDP is a collection of sets {S, P, A, 
W}, where S represents state variables, P represents 
state dynamics as transition probabilities, A repre-
sents the actions available to an agent, and W repre-
sents the rewards to taking particular actions under 
particular conditions.   A POMDP is an MDP with 
two additional components, a set of observations, Θ, 
and an observation model, R.  Observations θ∈Θ are 
the only information the agent has on the true state, S, 
which is unobservable.  The observation model R 
describes the probabilistic relationship between ob-
servations θ and the true state S.  In other words, the 
agent uses the observation model R to make infer-
ences about the true state S based on  noisy observa-
tions θ.  
 
Solution of MDPs and POMDPs proceeds through a 
recursively defined value function V.  In the case of 
POMDPs, this value function is:
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The value function V is simply the greatest expected 
net benefit that the agent can achieve over time, tak-
ing into account that as conditions change in the fu-
ture, different actions may be warranted.  From the 
solution of V we can also derive an optimal policy   
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 which is a mapping from beliefs about the current 
state, π, into the optimal action.  In other words, for 
any possible set of beliefs about the true state S at any 
time in the decision problem, the optimal policy iden-
tifies the action that will have the greatest long-term 
expected net benefit. 
 
While the above formulation may seem abstract, the 
concept it represents is very intuitive.  We live in a 
world that we understand almost exclusively through 
limited and imperfect observations.  In terms of our 
road erosion management problem, we do not de-
velop erosion control prescriptions based on known 
sediment loading rates, rather on the basis of what we 
think those rates are.  Even an extensive (and expen-
sive) field study can never tell us exactly how much 
sediment a particular road segment is producing—in 
most cases, a field study will only be able to generate 
an estimate of production on a few segments.   
 
To make the POMDP formulation more concrete and 
its significance clearer, we now construct a particular 
POMDP that addresses the question of whether an 
erosion monitoring scheme should be implemented 
on a road segment.  We consider the problem faced 
by a manager who has three actions available to ad-
dress erosion on a road segment suspected of produc-
ing an unacceptable level of sidiment:  to maintain 
the road as it is, to monitor the road’s erosion level 
(by installing field instruments), or to treat the road 
(by adding rock or making design improvements).   
The first of these is quite inexpensive but does noth-
ing to reduce current erosion rates or generate better 
estimates of these rates; the second is more expensive 

and does nothing to reduce erosion, but does provide 
information for subsequent decision-making; the last 
is quite expensive but has a good chance of effec-
tively reducing sediment production on the road 
(though, to reiterate, the manager can’t know with 
certainty either the erosion rate or the effectiveness of 
treatment). 
 
In terms of the POMDP formulation, the action set A 
thus consists of {maintain, monitor, treat} and the 
state variable S is erosion.  To keep the model com-
putationally tractable and for ease of exposition, we 
restrict this state variable to only two possible values, 
High Erosion and Low Erosion.  The observation set 
consists of the same two possible values, High Ero-
sion and Low Erosion, but an observation of θ = 
High Erosion does not necessarily mean that the true 
state S = High Erosion.  Instead, we define an obser-
vation model R as follows: 
 

1 2 30.6 0.4 0.9 0.1 0.5 0.5
0.4 0.6 0.1 0.9 0.5 0.5j j jR R Rθ θ θ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

         

 
Each matrix, with the state j S∈   defined by row and 
each observation θ defined by column, defines the 
probabilistic relationship of observation to true state 
under a different action.  Because we have no data on 
these relationships, we have chosen parameters that 
provide a reasonable relative information content to 
observations under different actions. 1

jR θ  , for exam-
ple, tells us that after taking action a=1 (maintain) 
and moving to the unobservable state j=Low Erosion, 
we would observe θ=Low Erosion with 60% prob-
ability and θ=High Erosion with 40% probability.  
That is, maintaining the status quo provides some 
information, presumably through casual observation 
of the road, but it is weak information.  2

jR θ  , in con-
trast, tells us that implementing a monitoring plan 
(a=2), yields a much stronger basis for inference 
based on observations: in this case, taking an obser-
vation when the true state is j=Low Erosion yields 
θ=Low Erosion with 90% probability and θ=High 
Erosion with 10% probability.  Finally, 3

jR θ  indicates 
that immediately after treating the road, observations 
tell us nothing about the true state of erosion.  We 
impose this condition to reflect the fact that treat-
ments themselves often cause transient changes in 
erosion rates that tell us little about the true state of 
the road. 
 
The stochastic dynamics of the state S (the sediment 
production level) are given by transition probability 
matrices which we define as follows: 
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The first two matrices indicate that under actions a=1 
and a=2 (maintain and monitor, respectively), a Low 
Erosion road will stay a Low Erosion road and a 
High Erosion road will stay a High Erosion road.     

3
ijP  tells us that under a=3 (treat), a Low Erosion road 

stays in that same state with 95% probability, but 
allows a 5% chance that the treatment will actually 
backfire and create a High Erosion road.  Similarly, 
treating a High Erosion road has an 80% chance of 
successfully creating a Low Erosion road and a 20% 
chance of failure (meaning the High Erosion road 
stays that way).   As with the observation model, 
these values are not derived from field data, but are 
chosen by us to reflect a plausible scenario for analy-
sis. 
 
Finally, the reward structure (actually, cost structure) 
in our model is as follows: 
 

1 2 31 20 3 22 6 6
1 20 3 22 6 6ij ij ijW W Wθ θ θ
− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
   

 
Here the columns of each matrix represent the possi-
ble states j and the rows represent possible observa-
tions θ.  [We have suppressed the i-dimension of the 
cost structure since we assume the cost depends only 
on the state and not how the transition to the state 
occurred, as in the general POMDP formulation.]   In 
each submatrix of W, the rows are the same because 
in our case the observation does not directly affect 
costs, which are in thousands of dollars.  The matrix 
W1 tells us that maintaining the road in Low Erosion 
state will cost $1000, which is very cheap compared 
to $20,000, the cost of maintaining the road in High 
Erosion state.  W2, the payoffs to monitoring, are the 
same as W1 plus the cost of the monitoring program 
itself ($2000).  That is, monitoring does nothing to 
change the costs associated with the erosion per se, it 
is a pure additional cost.  W3 tells us that treating the 
road will cost us the same $6000 regardless of 
whether the road is in Low Erosion or High Erosion 
state.  Comparing all these costs, it’s obvious that if 
the decision-maker knew the true state to be Low 
Erosion, the best choice would be to maintain the 
current situation (a=1), and if the decision-maker 
knew the true state to be High Erosion, the best thing 
to do would be to treat the road right away (a=3).   

However, the premise of our model, and the reality 
that managers generally face, is that the true state is 
unknown. 
 
Finally, we assume a discount factor of β=0.95, 
which completes our model specification.  

Results 

A POMDP solution consists of the recursively de-
fined value function Vt(π) and the associated optimal 
policy δt(π).  Because the solution technique is rather 
complicated, we will not describe it here; interested 
readers can consult Cassandra (1994, pp. 45-54) for a 
good discussion of the Monohan/Eagle algorithm we 
used.  POMDP algorithms share with MDP algo-
rithms the basic notion of backward recursion from 
an arbitrarily defined end of time, T.  In our model, 
time T comes after all decisions have been made and 
after uncertainty about the true state has been re-
solved (which allows unambiguous values to be as-
signed to each of the possible final states).    
 
Figure 1 shows the value function at the final time 
period in which a decision is to be made, T-1.  The x-
axis is the belief simplex for the two possible states 
in S: p(Low Erosion) runs from left to right, and since 
p(High Erosion) must be 1-p(Low Erosion), p(High 
Erosion) runs from right to left.   The y-axis is the 
expected value of taking particular actions.  The blue 
line is the value function, giving the expected value 
at T-1 of taking whichever action has the lowest ex-
pected cost.  Here, since there is only one decision 
period before the end of the problem, these values 
have very straightforward interpretations.  If the 
manager’s current belief is that p(Low Erosion) is 
anything less than 74%, the optimal action is to treat 
the road, which has a payoff of –6 regardless of the 
current true state.  If, however, the manager’s current 
belief is that p(Low Erosion) > 74%, then the optimal 
action is to maintain the status quo road, which has 
an expected value of [–1*p(Low Erosion) + –20*p 
(High Erosion)].  In other words, the more certain the 
manager is that the true state is in fact Low Erosion, 
the greater the expected payoff to doing simple main-
tenance work.   Thus, Figure 1 not only shows the 
value function but also partitions the belief space into 
regions on which each possible action is optimal, i.e., 
visually lays out the optimal policy.   
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Fig. 1: The value function in the last decision period, 
showing the partition of the belief space into regions 
associated with different optimal actions.  Here, treat is 
optimal for beliefs p(Low Erosion) <= 74%, and main-
tain is optimal for beliefs p(Low Erosion) > 74%. 
 
Notice that the action monitor does not appear as part 
of the optimal strategy in Figure 1.  The reason is 
simply that, with no further actions to be taken after 
T-1, there is no justification for paying to gather in-
formation that can’t provide future benefits in the 
form of improved decision making.    
 
Of course, we are almost always interested in prob-
lems that have at least several decision periods.  Fig-
ure 2 shows the evolution of the value function over a 
10-year time horizon.  The most obvious effect of 
lengthening the time horizon is that the value func-
tion moves steadily downward, due to the expectation 
of increased future costs (a direct result of our model 
setup).  However, the shape of the value function also 
changes, as do the actions that form the optimal pol-
icy.  Specifically, for T-3 and all earlier periods, 
monitor becomes part of the optimal strategy.  The 
belief ranges for which monitor is optimal are be-
tween the two black curves; the beliefs to the left of 
the left-most black curve are those for which the op-
timal action is treat, and those to the right of the 
right-most black curve are those for which the opti-
mal action is maintain.  The belief range over which 
treat is optimal is neither strictly increasing nor 
strictly decreasing with time, because the optimal 
policy has not fully converged to a stable mapping, 
but the general picture is clear.  Monitoring enters the 
optimal policy at T-3, once the time horizon has be-
come long enough that information generated by 
monitoring can yield sufficient benefits (in expecta-
tion) to offset the cost of the monitoring program.  As 
the time horizon deepens, the range of beliefs over 
which monitoring is part of the optimal strategy in-
creases, from about [0.81 0.90] at T-3 to about [0.81 
0.97] at T-10.  Immediate treatment is still the opti-

mal action for beliefs up to around p(Low Ero-
sion)=0.8, and simply maintaining the status quo is 
preferred only for beliefs such that p(Low Erosion) is 
well over 0.9. 
 
The above discussion and figures may seem abstract, 
but in fact they correspond quite nicely to the way 
most of us get through life.  We routinely make deci-
sions that are based not on directly observable facts, 
but on our beliefs about those underlying facts, which 
for a variety of reasons we either can’t or don’t want 
to know with certainty.  Both the facts and our beliefs 
about them may change over time, but at any point in 
time we make decisions based on our beliefs at that 
time.  People can’t apply Bayes’ theorem with the 
efficiency that a computer can, but the general notion 
of combining new information with prior beliefs 
seems to reflect a lot of human decision making.  
Perhaps more importantly for our present purposes, 
the partition of the belief space into regions corre-
sponding to different optimal actions is very intuitive 
and also useful.  As Figure 2 shows, one person may 
believe that p(Low Erosion)=0.1, another that p(Low 
Erosion)=0.4, and a third that p(Low Erosion)=0.7, 
but the POMDP makes clear that they should all still 
be able to agree on treating the erosion problem im-
mediately. 

 
Fig. 2: The evolution of the value function over 10 deci-
sion periods.  The value function moves monotonically 
downward as the time horizon increases, which is an 
artifact of our cost-only model.  For T-3 and earlier 
periods, monitoring becomes part of the optimal strat-
egy for those beliefs between the two black curves. 
 
As we mentioned at the outset, these results are a 
function of our model’s structure and parameters, and 
are not to be understood as generally applicable. 
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Conclusions 

The partially observable Markov decision process 
(POMDP) provides a formal framework for exploring 
when information-gathering is likely to be worth the 
cost and when not.  Given the expense of monitoring 
programs in natural resource management, budgetary 
realities ensure that managers have to choose among 
candidate monitoring programs.  The POMDP pro-
vides a tool for thinking carefully about such choices. 
 
Here, we have presented an application of POMDP to 
a stylized problem in logging road management.  
Because POMDPs are even more subject than tradi-
tional MDPs to the ‘curse of dimensionality,’ re-
search on numerical techniques for POMDP solution 
is a very active field in engineering and artificial in-
telligence—more fully developed applications in 
natural resource management will have to draw on 
recent advances in heuristic techniques such interior-
point methods and witness algorithms.   However, 
even our simple example has shown that, under plau-
sible parameter values, the costs of monitoring can 
easily exceed the benefits.  For the parameter set as-
sumed above, we found that, for problems with a 
time horizon of at least 3 decision periods, imple-
menting erosion control treatments without first 
monitoring was optimal as long as the subjective 
probability of the road being highly erosive was more 
than about 20%.   Monitoring was optimal over a 
narrower range of beliefs, specifically when the be-
lief that existing road conditions were good was be-
tween about 80% and about 95%.  That is, monitor-
ing in our example was preferred only when the man-
ager had a pretty strong hunch that current conditions 
were good, in which case the monitoring served es-
sentially to rule out the need for more aggressive and 
expensive treatment.   
 
In developing our case for the POMDP as a useful 
decision-making tool, we deliberately touched lightly 
on the nature of the subjective probabilities π, which 
are really the heart of the POMDP.  While from a 
technical point of view there’s not much to say about 
π, which is simply a vector of conditional probabili-
ties, we should address a concern that might arise 
from a philosophical point of view.  Some may object 
that subjective probabilities have no place in manage-
ment or policymaking, which should strive at all 
times to be as objective as possible.  Without rehash-
ing the centuries-long Bayesian-vs-frequentist strug-
gle, we note that many Bayesians consider subjective 
probability the only sensible notion of probability, 

and so would dismiss this criticism as invalid on 
principle.  For our purposes, it doesn’t seem neces-
sary to take that rigorous Bayesian position.  We are 
satisfied with the more mundane argument that sub-
jective probabilities are so manifestly the basis for 
current natural resource management and policymak-
ing that few (if any) decisions would be made with-
out them.  In short, we think subjective probabilities 
in natural resource decision making are perfectly sen-
sible and almost perfectly unavoidable. 
 
The deep uncertainty we face in many aspects of 
natural resource management requires that we think 
carefully about when to invest in learning about the 
systems we manage.   The POMDP provides a coher-
ent framework for such thinking. 
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