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ABSTRACT 

Technical efficiency in fisheries has most often been investigated using data envelopment analysis 
or stochastic production frontiers, the latter usually estimated by maximum likelihood methods.  
This paper describes an alternative, Bayesian approach to estimating stochastic production 
frontiers in fisheries.  Through an application to the US West Coast hake (also known as whiting) 
fishery, we demonstrate the relevance of Bayesian methods to technical efficiency analysis and 
highlight some particular strengths of the approach that may appeal to fisheries economists.  We 
focus on variation in efficiency among boats and over time, showing how the Bayesian 
hierarchical approach links unobserved heterogeneity among sample units within a common 
framework.  Although we are not aware of previous applications of hierarchical models to 
fisheries efficiency analysis, the models introduced here apply techniques common in other areas 
of economics, namely Markov Chain Monte Carlo (MCMC) methods.  Our chief conclusions are 
that 1) panel models with hierarchical structure to allow for boat- and year-specific efficiency 
measures are preferable to simpler specifications, and 2) there appears to have been a progressive 
outward shift in the efficient frontier in the shore-based whiting fishery during 1987-2003. 

 

INTRODUCTION 

Analysis of technical efficiency in fisheries provides a framework for studying issues such as 
regulatory impacts and the relative importance of skill versus luck in fishing success2.  The two 
main approaches to such analysis are data envelopment analysis (see, e.g., Walden et al., 2003), 
and stochastic production models (see the literature reviewed in Holloway et al. (2005)).  In this 
paper, we investigate technical efficiency in the US Pacific hake fishery, by volume the largest 
fishery on the US West Coast3, within the framework of a stochastic production frontier model.  

                                                 
1 This paper should have been included In Sumaila, U.R., Marsden, D. (eds.), 2006. Proceedings of the 2005 North 
American Association of Fisheries Economists Forum  FCRR 2006, 14(1) 220 pp. 
2 Overviews of technical efficiency and productivity in fisheries are available in Alvarez (2001), Felthoven and Paul (2004), 
and Fernandez et al. (2002). 
3 West Coast here refers to California, Oregon, and Washington. 



Our emphasis is on developing and comparing models that permit changes over time in firms’ 
locations with respect to an efficient frontier and in the location of the frontier itself.  Developing 
these models within a hierarchical Bayesian framework also permits us to explore the possibility 
that year- or boat-specific efficiency measures are linked stochastically.   

While most stochastic production frontiers, both within fisheries and within the wider production 
economics literature, are estimated using maximum likelihood techniques, we adopt the Bayesian 
approach here for several reasons.  First, recent advances in Bayesian estimation permit 
implementation of models of significantly greater complexity than previously thought possible.  
Second, the hierarchical approach employed in our Bayesian estimation enables us to incorporate, 
formally and robustly, aspects of intra-sample heterogeneity that may significantly affect 
inference about efficiency.  Third, because many questions about appropriate specification in the 
presence of heterogeneity reduce to a question of model selection, our Bayesian MCMC 
estimation has particular appeal because it leads naturally to the necessary diagnostics for model 
selection.   

Pacific hake (Merluccius productus), also known as Pacific whiting, is a migratory species found 
from Baja California to the Gulf of Alaska.  Most of the commercial catch is taken with mid-water 
trawl gear in the northern half of this range.  The hake fishery is a high-volume, low-margin 
fishery that accounted for 64% of the catch (by weight) in the shore-based limited-entry trawl 
fleet during 1993-2003.  Because of a tendency to spoil rapidly, hake were long regarded as 
undesirable by US fishermen.  During the 1990s, growth in the surimi market and improved 
processing techniques led to huge increases in the domestic catch, with most boats having 
refrigerated seawater storage to reduce spoilage, making them a fairly distinct segment.   

The hake fishery is managed by the Pacific Fisheries Management Council, which allocates the 
total allowable catch among a tribal fishery and three non-tribal sectors (a shore-based fleet, a 
catcher-processor fleet, and a factory trawler fleet).  In this paper, we consider only the shore-
based fleet, specifically the 41 boats that caught hake on at least 100 trips during our study period 
(1987-2003).  While trip limits apply before and after the main season (to allow for incidental 
catch of whiting), during the main season there are no trip limits.   

Pacific whiting were declared overfished in 2002—meaning that estimated biomass had fallen 
below 25% of estimated unfished biomass—but have rebounded recently.  In 2004, the National 
Marine Fisheries Service declared the stock rebuilt, which means that current biomass is over 
40% of unfished biomass. Although there are by-catch concerns (salmon and rockfish, in 
particular), trawlers operating off the coastal shelf can often net hake with little or no by-catch.  
For this reason, we adopt a single-output stochastic production function in our analysis below. 

 

COMPETING STOCHASTIC FRONTIER MODELS OF TECHNICAL EFFICIENCY   

The basis of our analysis is the composed-error model, first formalized by Aigner, Lovell and 
Schmidt (1977)4.  This approach allows us to investigate catch as a function of inputs to 
production, random error, and inefficiency.  Given data on output (here, whiting catch per trip) 
and regressors thought to influence output (inputs to production as well as exogenous factors), a 
stochastic production frontier may be specified as 

(1)  yi = xi′β - zi + ui

where yi is the catch by unit i; xi is a vector of explanatory variables; β is a vector of parameters 
that, together with xi , defines the frontier; ui is a normally distributed sampling error term; and zi 
a term denoting the distance of yi from the frontier, i.e., zi is a measure of the inefficiency of unit i, 

                                                 
4 A review of recent developments in composed-error modeling is found in Murillo-Zamorano (2004).   



which we will assume follows a truncated normal distribution.  These are standard assumptions 
in the literature (see Kumbhakar and Lovell (2000) for a book-length treatment).    

Using this basic framework, we estimate six alternative specifications of the composed-error 
model of technical efficiency.  The purposes of this study are to explore the relative importance of 
regressor variables, to demonstrate the application of hierarchical modeling in the fisheries 
context, and to assess the effect of panel model specification on estimates of technical efficiency.  
Below, we report on the estimation of models that are elaborations of (1), assuming throughout a 
Cobb-Douglas production function.  The inputs to production we consider are horsepower, crew 
size, and the total duration of tows on each trip.   We also include an estimate of exploitable 
biomass in one model.   Before detailing these model specifications, however, we briefly describe 
our study data. 

Data 

Our primary data source is the logbook information required of all vessels with federal limited-
entry groundfish permits.  Logbooks record information on each trip and tow, including species 
and estimated catch weight, gear used, location of fishing, and duration of tow.   Supplementary 
data on boat characteristics were obtained from the Pacific Fisheries Information Network.  In 
order to keep the analysis focused on the boats that form the core of the whiting fleet, we did not 
include in our study boats that had fewer than 100 whiting trips during 1987-2003.  We further 
limited attention to trips made during May-September, when trip limits are not in effect.  This left 
us with a data set consisting of 10,865 whiting trips taken by an unbalanced panel of 41 boats.  
These data account for 82% of the shore-based fleet’s whiting catch during 1987-2003.  In 
addition to logbook data, we used estimates of the Pacific hake population (spawning biomass) 
developed by the Pacific Fisheries Management Council’s Groundfish Management Team (Helser 
et al., 2004).  

Cross-Sectional Models 1 and 2 

We first estimate two cross-sectional models to provide a baseline for comparison with 
subsequent panel models.  Both models include crew size, horsepower, and total duration of tows 
per trip as regressors.  Model 1 includes a point estimate of coast-wide exploitable biomass by 
year, while Model 2 includes year dummies in lieu of the biomass estimate. 

Because our unit of observation is the individual trip, we elaborate equation (1) to account for 
three dimensions of the sampling environment, namely the vessel, year, and trip for which catch 
is reported.  We denote catch (in pounds) by vessel i in year j during trip k as yijk.  Our goal is to 
explain variations in catch as a function of a vector of covariates xijk, an implicit measure of 
technical efficiency zijk, and a random error term uijk.  The cross-sectional regression equation in 
Models 1 and 2 is then:  

(2)  yijk = xijk′β - zijk + uijk. 

In these cross-sectional models, equation (2) is estimated directly on the trip observations, with 
no consideration of possible links among observations for each boat or year.  That is,  Models 1 
and 2 are distinguished from the panel models to follow by the assumption that each zijk is 
independently and identically distributed from the truncated-Normal distribution, ƒTN(zijk|µ,ω2).  
We also assume that the sampling error term u is i.i.d. from a Normal distribution with mean zero 
and variance σ2, or ƒN(uijk|0,σ2).   

Further assuming a diffuse prior probability distribution for the model parameters and a Normal 
likelihood function for the data given model parameters enables us to proceed with our Bayesian 
estimation.  Specifically, we derive fully conditional posterior  distributions for the parameter set 
{β, σ, µ, ω}, as detailed in Holloway et al. (2005).  Given the fully conditional distributions of the 



parameters and latent inefficiency terms z, we use a Gibbs sampling approach to conduct 
inference on the posterior distribution.   

Estimation results for Models 1 and 2 are given in Table 1.  While we delay discussion of the 
results until all the models are presented, it is worth noting here that Model 2 is a direct response 
to the counter-intuitive finding that the biomass coefficient in Model 1 was negative and strongly 
significant.   

Panel Models 3 and 4 

The cross-sectional models presented above do not account for the likelihood that boats have 
something like a characteristic level of inefficiency, as well as the possibility that years may also 
have such a characteristic level of inefficiency, due for example to ocean conditions.  In order to 
accomodate this likely feature of the data, we next estimate two single-layer hierarchical panel 
models.  The idea of the hierarchical modeling structure is that observations within a sample may 
be probabilistically related at the unit or sub-unit level and that these relationships may be 
captured by representing model parameters themselves as draws from a distribution.  For 
example, we may suppose that boats’ inefficiencies in a given year are drawn from a common 
truncated-normal distribution, the mean  of which varies over time, but that this mean in a given 
year is related to that of other years by virtue of coming from the same probability distribution 
function.  In such a case, the econometric task would be to estimate both the year-specific mean 
inefficiencies and the parameters of whatever distribution is assumed to generate those mean 
inefficiencies.   

Our Models 3 and 4 exploit the availability of panel data by invoking hierarchy in the parameters 
governing inefficiency.  Specifically, in Model 3 we suppose that each boat i has a particular level 
of inefficiency, zi, which is the same in all years, and that zi is a realization from a truncated-
Normal distribution ƒTN(zi|µ,ω2). We then estimate the regression equation 

(3)  yijk = xijk′β - zi + uijk. 

Here we require estimates of zi for each of the i=41 boats, as well as of the parameters µ, ω2, and 
σ.  Model 4 represents an analogous formulation in which the organizational unit is the year.  
That is, each of the j=17 years is assumed to have a particular level of inefficiency, zj, that is the 
same for all boats and trips in that year, and the zj are realizations from a common truncated-
Normal distribution ƒTN(zj|µ,ω2).   

We did not expect Models 3 and 4 to perform particularly well, as the existing literature on 
efficiency strongly suggests that generally there is significant heterogeneity among firms’ 
inefficiency levels, and heterogeneity over time is likely as well.   However, we present these 
models here as an intermediate step in the development of Models 5 and 6 below, in which an 
inefficiency level is estimated for each boat in each year. 

Panel Models 5 and 6 

Models 3 and 4 are unrealistically constrained because they impose the assumption that 
(respectively) either each boat has an inefficiency level that is invariant over time or that all boats 
have the same inefficiency level within a given year.  To address this shortcoming, Models 5 and 6 
incorporate a two-layer hierarchical structure for the inefficiency terms.   That is, we suppose that 
trips by boat i in year j have a particular efficiency level zij, but that there are both boat-specific 
and year-specific influences on the zij, which may be captured in hierarchical parameters to be 
estimated simultaneously. 

Model 5 proceeds from the hypothesis that inter-boat differences are more important 
determinants of efficiency than are inter-annual differences.  This hypothesis is embodied in a 
two-layer hierarchy of inefficiency parameters: the boat-year inefficiencies, zij, are drawn from a 



distribution ƒTN(zij|µi,ω2) with a mean µi specific to each boat, and these µi are in turn drawn from 
a distribution ƒTN(µi |λ,θ).  The regression equation becomes 

(4)  yijk = xijk′β - zij + uijk. 

This specification has considerably more estimands than the single-layer hierarchy of Models 3 
and 4: 214 zij (one for each boat-year  combination), 41 µi (one for each boat), plus ω, λ,  θ, β and σ. 

Model 6 reverses the hierarchy of the boat and year influences, i.e., proceeds from the hypothesis 
that inter-annual differences in fishing conditions (perhaps catchability or ocean regime) are 
more important determinants of efficiency than are inter-boat differences.  This hypothesis is also 
embodied in a two-layer hierarchy of inefficiency parameters: the zij are drawn from a distribution 
with a time-varying mean, ƒTN(zij|µj,ω2), and these µj  are in turn drawn from a distribution of 
year-specific mean inefficiencies ƒTN(µj |λ,θ).  Here we must estimate 214 zij, 17  µj , plus ω, λ, θ, β 
and σ. 

Model Comparison     

Bayesian model comparison is discussed in detail in Zellner (1996, pp. 291-318).  However, until 
as recently as Chib (1995), model comparisons have proved intractable for all but the simplest of 
models.  Chib (1995) develops a robust procedure, exploiting the MCMC estimation, for 
comparing models, and we implement that procedure here to ascertain the relative likelihoods 
that each of the respective models is more likely to have generated the data.   Details on 
implementation of the marginal likelihood calculation in the context of stochastic production 
frontiers are given in Holloway et al. (2005). 

 

RESULTS 

Table 1 presents the basic results of the estimations performed.  Due to space constraints, we do 
not report intercept or dummy variable parameter estimates; zijk  from Models 1 and 2; zi from 
Model 2; zj from Model 3; or µi, µj, and zij from Models 5 and 6. 

All the models suggest that the output elasticities of horsepower and tow hours are significantly 
positive, and the magnitude of these parameter estimates themselves is quite similar across the 
models.  There is less support overall for a significant positive elasticity of crew size, and the 
coefficient of biomass that we estimated in Model 1 turned out to be significant and negative.  The 
reason for this is that biomass was declining quite steadily during the study period, thus its 
inclusion in the regression model serves as a time index during a period in which catch per trip 
was steadily increasing5.   

Comparing marginal likelihoods across models suggests that Models 5 and 6 are best supported 
by the data.  Indeed, these two models, which differ only in that the hierarchy relating boat-level 
to year-level information is reversed, are very similar in terms of both parameter estimates and 
marginal likelihood values.  The main conclusion to be drawn here is that the two-layer 
hierarchical panel models are preferred, and that the order of the hierarchy makes little difference 
in this case.  

Mean percent efficiency scores vary among the models, with Model 5 estimating a significantly 
lower overall level of efficiency in the sample than any of the other models.  Given the similarity 
between the preferred Models 5 and 6 in most respects, it is surprising that they differ to this 
degree in their estimates of mean efficiency scores, something we are looking into further. 

                                                 
5 Thanks to Dan Huppert for helping us interpret this result. 



Table 1. Main estimation results for six stochastic frontier models of technical efficiency in the Pacific hake fishery.   
Estimand Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

β1 (Horsepower)1   0.27 (14.77)2   0.33 (18.06)   0.28 (7.47)   0.35 (19.45)   0.37 (4.45)   0.49 (7.62) 
β2 (Tow hours)   0.05 (5.79)        0.07 (8.55)   0.06 (7.61)   0.07 (8.45)   0.05 (5.56)   0.05 (5.56) 
β3 (Crew size)   0.41 (6.38)   0.26 (3.98)   0.06 (0.78)   0.29 (4.55)  -0.09 (-1.06)  -0.08 (-0.99) 
β4 (Biomass)  -0.47 (-28.41)   --   --   --   --   -- 
σ (Sampling Error)   0.56 (12.48)   0.58 (109.68)   0.56 (146.50)   0.59 (147.35)   0.52 (144.73)   0.52 (143.72) 
µ (Mean of zijk, zi, or zj)   1.52 (5.69)   0.46 (3.46)   0.49 (5.94)   0.19 (1.97)   --   -- 
ω (St.dev.of zijk, zi, or zj)   0.19 (1.87)   0.07 (3.09)   0.26 (8.30)   0.07 (2.27)   0.30 (14.21)   0.38 (18.37) 
λ (Mean of µi or µj)   --   --   --   --   2.74 (4.36)   1.60 (6.79) 
θ (St. dev. of µi or µj)   --   --   --   --   0.22 (6.22)   0.32 (2.38) 
Log Marginal Likelihood3  -9373.96  -9731.66  -9285.59  -9848.04  -8387.14  -8442.29 
Maximized Log Likelihood  -9189.07  -9532.95  -9078.43  -9673.77  -8338.03  -8314.63 
Numerical Standard Error   0.0048   0.0021   0.0001   0.0077   0.0016   0.0038 
Mean % Efficiency Score   0.88 ( 0.02)   0.96 (0.01)   0.96 (0.01)   0.98 (0.01)   0.81 (0.04)   0.88 (0.01) 
1 β terms are elasticities (a Cobb-Douglas production function is assumed). 
2 Numbers in parentheses are asymptotic t-values, except for in the last row, where they represent the standard deviation of Gibbs 
samples of the mean efficiency score. 
3 The log marginal likelihood of the model, calculated as in Chib (1995). 

 

Figure 1 shows the change in the coefficients of year dummy variables over time, as estimated in 
Model 5.  There seems to be a reasonably strong upward trend in the value of these parameters, a 
trend that was also evident in the results of Models 2, 3, 4, and 6.  These dummy coefficients may 
indicate a significant outward shift of the efficient frontier due to technological change, though 
our approach here does not allow us to separate the effects of technological change from other 
factors that may shift the efficient frontier (such as ocean conditions) or, indeed, from other 
unobserved factors that may be influencing the dummy coefficient estimates.  At a minimum, 
Figure 1 suggests the possibility of an interesting study of total factor productivity in the Pacific 
hake fishery. 

Estimates of Year Dummy Variables
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Figure 1: Estimated coefficients for the year dummy variables in Model 5, showing a 
discernible shift in the production frontier over time.  All parameter estimates were 
statistically significant, and quite comparable among Models 3, 4, 5, and 6. 

 



CONCLUSION 

Not surprisingly, our results suggest that accounting for the panel structure of catch data in 
studies of fisheries efficiency can lead to quite different conclusions from those based on cross-
sectional methods.  Beyond this, we have found that representing the boat and time dimensions 
as two layers of a hierarchical model yields the best results among the models considered.  
Nevertheless, even when the models differed quite a bit by the measure of marginal likelihood, 
the results were broadly similar across most of the models.  The most salient conclusions are that 
the elasticities of horsepower and tow hours are robustly positive across the models, and that 
there seems to have been a fairly steady outward shift in the technically efficient frontier over 
time.   Estimation of the same family of models under translog production functions, which we 
have not reported on here due to space constraints, produced quite similar results. 

Our estimates of mean efficiency are higher than those reported in most other studies. We note 
that these mean values obscure significant heterogeneity among individual units in the models, 
and particularly among the boat-year combinations of Models 5 and 6.  We are currently 
investigating this heterogeneity, among other reasons for the purpose of testing whether there are 
statistically significant differences in efficiency among boats or years.  One question along these 
lines is whether boats can be ranked by their efficiencies within and across years.  We also hope to 
begin more general productivity studies to understand the components of productivity change in 
the Pacific hake fishery. 
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