
SC/56/SD7 

 1

 Progress in the development and validation of a genetic model for use in the Testing of Spatial 
Structure Methods (TOSSM) project 

David Tallmon1, Karen Martien2, and Ralph Tiedemann3 
 

1Université Joseph Fourier, Grenoble, France. 
2Southwest Fisheries Science Center, La Jolla, CA, USA. 
3University of Potsdam, Potsdam, Germany. 

 
 
Introduction 

The International Whaling Commission has recognized the potential usefulness of genetic data to gain insight into 
whale population structure and management.  However, the collection, processing and analysis of genetic data require a large 
investment of time and resources.  In order to maximize the return on that investment, the Testing of Spatial Structure 
Methods (TOSSM; IWC, 2003) project was started with the purpose of using simulation performance testing to investigate 
how well genetic data can distinguish among different population structures and to guide decision-making.  A particular 
focus of the project is to evaluate the performance of different genetic analytical methods for defining management units for 
use under specific management regimes.  Thus, TOSSM requires the generation of simulated datasets where the true 
population structure is known.  This report outlines the investigations of a simulation model, METASIM (Strand, 2002), 
identified for this purpose.  METASIM creates a suite of realistic demographic scenarios using populations represented by 
matrices and tracks the genotypes of individuals cycling through these matrices.  This simulation model provides the 
flexibility of well-known Lefkovich demographic matrix models to determine the transitions of individuals among life 
history stages, and tracks the genotypes of these individuals, as required to simulate population genetic processes.  We used 
versions of METASIM, called RMETASIM 0.0.7 and 0.0.9, designed for use in the R statistical package (Team, 2003) rather 
than the stand-alone version of METASIM. 

The underlying algorithm of RMETASIM is fairly straightforward (Figure 1).   Individuals are the basic unit used in 
the simulation.  Individuals within populations survive, move among life history stages, and reproduce, passing their 
genotypes on following Mendelian inheritance.  It is also possible for individuals of any life history stage (or their gametes) 
to move among populations.  Local populations can be subject to local extinction events.  Part A of the Appendix contains 
more details about the underlying structure of RMETASIM. 
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Figure 1: Basic algorithm used in RMETASIM (Strand, 2002) simulations. 
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The simulations described in this report were used to ensure that RMETASIM matches theoretical expectations from 
genetic and demographic theory, and to ensure that RMETASIM could be used efficiently to simulate whale demography and 
genetics.  To test the performance of RMETASIM, various combinations of genetic and demographic parameters were used, 
populations were simulated, and the outputs compared to equations from population genetics and demographic theory.  In 
many of the simulations described below, simple Leslie (age-based) matrices were used to construct isolated populations or 
populations linked by migration.  Initially, we used discrete generation demography, without mutation, because it allowed us 
to use a vast body of theory developed by Wright and Fisher for comparison to genetic outputs from the model.  In contrast, it 
is much more difficult to obtain expectations for the more complex genetic processes in large matrix models with age 
structure and overlapping generations.  For the initial simulations, the size of each population was maintained using K set at a 
known value.  The effective size (Ne) of a population determines the rate of decay of genetic variation, and setting Ne equal to 
K allowed us to compare observed model behaviors to theoretical expectations.  In subsequent simulations we explored the 
effects of various mutation models and molecular markers of RMETASIM performance. 

To examine the demographic algorithms of RMETASIM, more complex Leftkovich  (stage-based) models with 
overlapping generations were simulated and compared to theoretical expectations.  Specifically, we used models of gray 
whale (Eschrichtius robustus) demography to ensure the population growth rates from RMETASIM adequately match 
outputs predicted by matrix algebra (Caswell, 2001). The demographic and genetic inputs used in many of these simulations 
are described in some detail in the main body of the report.  However, greater details and the exact inputs for a subset of the 
scenarios modeled are found in the Appendix.  Additional justification and description of the vital rates used in the matrices 
can be found in Martien et al. (SC/56/SD5).  

The tasks outlined by the TOSSM workgroup for this project and described in this report are the following: 
1) check model outputs against theoretical expectations from population genetic theory in order to validate the 

biological and genetic algorithms used by RMETASIM. 
2) examine the robustness of model predictions to genetic marker type. 
3) augment existing model code to include flexible input of initial allele frequencies and genetic marker types and 

examine the impact of different initial allele frequencies on time to genetic equilibrium. 
4) incorporate important aspects of whale population biology and examine their effects on times to demographic and 

population genetic equilibria and expected equilibrial values. 
In most simulations, small population sizes were used to address these tasks because they run more efficiently, yet 

still provide an adequate test of RMETASIM performance for the tasks described.  Fifty replicates were used in all scenarios 
presented unless otherwise indicated.  Not all scenarios simulated were included in this report in order to keep the report and 
figures concise and easy to read.  The mean and variance (where large enough to be visible) for all parameter estimates are 
shown in each figure.  The input files used to assign parameter values for a few of the scenarios presented are in included the 
Appendix, and input files for all others can be obtained from the authors upon request.   

For the most part, RMETASIM is a metapopulation simulation engine.  A primary benefit of using RMETASIM as a 
program within the R statistical framework is that data produced by the RMETASIM simulations can be analyzed seamlessly 
within R using various contributed statistical packages.  For this report, the R package “ape”, contributed by an independent 
researcher for the analysis of molecular genetic data, was used in concert with R scripts written by Allan Strand and the 
authors to extract genetic summary statistics from the simulations.   
 
Section 1. Comparison of model outputs to theoretical expectations 

The validation of the genetic and demographic algorithms used in METASIM was achieved by comparing the rate of 
change and equilibrial values of common population genetics summary statistics from the model to expectations based upon 
single- and multiple- population genetic theory.  First, the rate of decay of genetic variation within populations and 
divergence among populations were recorded for known demographic conditions and compared to parametric values.  The 
initial simulations contained no mutation.  The genetic properties of the model were examined by first checking the behavior 
of the model with a single population, and then by investigating the multiple population behavior with and without migration.  
For all of the scenarios in this section, below diploid and haploid markers were simulated.  For most of these scenarios, both 
sequence and non-sequence molecular markers were simulated independently.  
 
No mutation 
 The rate of decay of genetic variation in a population is an inverse function of the (effective) population size, Ne.  
Specifically, the expected amount of heterozygosity (Ht) at any point in time (t)  can be calculated from the initial 
heterozygosity (Hi) and the effective population size (Ne) (Crow and Kimura, 1970), (p. 102). 
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Across a range of population sizes, the observed decay of heterozygosity in the simulations closely matched expectations 
(Figure 2).  Although there is variation among replicates, the expected value falls within the error bars calculated across 



SC/56/SD7 

 3

replicates and different effective sizes.  (See Appendix, Part B, for example input for the decay of genetic diversity in a single 
population.) 
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Figure 2:  The expected and observed decay in heterozygosity  
for an isolated population at three effective population sizes  
(Ne = 50, 20, 10). 
 
 Because few species exist as single, unstructured populations, it is of interest to examine the distribution of genetic 
variation within and among multiple populations.  Accordingly, we simulated 5 populations of known sizes and migration 
rates and observed the genetic divergence among these populations.  (See Appendix, Part C, for example input.) Under these 
controlled conditions it is possible to obtain expected values for several metrics of population divergence.  The most 
commonly used metric of population divergence is Weir and Cockerham’s θ, which is a more robust version of Wright’s 
well-known Fst in cases where the number of subpopulations is finite (Excoffier, 2001).  The easiest multiple-population case 
is no migration, in which case θ approaches unity over time.  The observed values from RMETASIM closely matched the 
predicted values as θ increased toward its equilibrium value (Figure 3).   The combined observations from the rate of increase 
in θ for the no migrant case, and the decay of heterozygosity in single, finite populations, suggest the model is robust in terms 
of its Mendelian genetics and the interactions between basic demography and genetics. 
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Figure 3:  The expected and observed increase in divergence  
among populations at a diploid (2N) and haploid (1N)locus. 
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It is also important to assess model behavior with migration among populations, because this is of interest in many 
biological situations.  Again, we used θ as the summary statistic of divergence among n populations of known effective size 
(Ne) and migration rate (m).  For the case of no mutation, θ is given by the equation, 
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provided by (Weir, 1996) (p. 183).  Figure 4A shows that equilibrium values are reached quickly at small Ne = 50, and that 
RMETASIM approaches the expected values across a range of migration rates.  Furthermore, it appears that the effect of 
population size on divergence follows expectation.  Larger populations have slightly lower equilibrium divergence values and 
reach these values at a slower rate than smaller populations (Figure 4B).  A doubling of the population size approximately 
doubles the time to reach 90% of the expected equilibrium divergence value, as found previously using Fst (Allendorf and 
Phelps, 1981). 
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Figure 4:  The observed increase in divergence among populations to equilibrium values with a) different numbers of 
migrants per generation and constant population size N = 50 and b) different sized local populations (N = 50, 100, and 200) 
exchanging one migrant per generation. Expected values are shown as horizontal lines. 
 
Mutation 
 We used the single population demography described above to test the robustness of the model when a mutation 
parameter was added to the simulations.  The expected level of genetic variation in a population is a function of Ne and the 
mutation rate (µ).  The number of alleles, heterozygosity, or number of polymorphic DNA bases at a diploid locus can be 
predicted from the composite parameter Θ, which is the product of these two values and a constant (Nordberg, 2001).  

µ Ne4=Θ        (3) 
We used this relationship to test whether the observed mean number of alleles, heterozygosity, and number of segregating 
sites (for sequence loci) produced by populations of known Ne and µ matched the expected value for Θ from this equation.  
Figure 5A shows theta as a function of time for a diploid locus with discrete (non-sequence) allelic states (such as 
microsatellites) determined by an infinite allele model for two values of µ.  The curve that shows decrease in Θ depicts the 
decrease in genetic variation in a population with unique alleles assigned to all individuals of the 1st generation, as mutation-
drift equilibrium is reached.   The two curves depicting an increase in Θ depict populations initialised with 1 allele that 
increased to their equilibrium values as mutation added genetic variation over the course of the simulations.  Similarly, 
Figure 5B shows the increase to the expected value of Θ for a haploid sequence of 150 bases in a population initialised with 
no genetic variation.  For the diploid and haploid loci, the R package “ape” was used to calculate Θ from the number of 
alleles and segregating sites, respectively. 
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Figure 5: The observed change in theta to its equilibrium value at a) a diploid locus and b) a haploid sequence. Expected 
equilibrium values are shown as horizontal lines.   
 
Section 2.    Robustness of model predictions to marker type 

There is a great deal of interest in the use of both bi-parentally and uniparentally inherited genetic markers for 
TOSSM because these markers often provide different and complementary insights into population structure.   Consequently, 
we examined the performance of RMETASIM using both nuclear, bi-parentally inherited diploid markers and maternally 
inherited, haploid markers under many of the conditions described above.  The results of simulations using haploid markers 
are shown in Figures 3 and 5.  The observed asymptotic decay in haploid heterozygosity and increase in divergence meet the 
expectations from population genetic theory, calculated using equation 1 modified for haploid, maternal-inheritance; the 
same was true for the diploid markers.  

The increasing availability of sequence data makes it important to examine how RMETASIM performs using this 
data type.  To do this we re-ran many of the population simulation conditions described above using haploid and diploid 
sequences and compared them to the previous results from non-sequence data.  Figure 6 provides one example in which there 
is no detectable departure from the expected rate of decay of mtDNA heterozygosity (allelic diversity).   The result is 
consistent whether sequence or discrete locus data are considered.  In all cases simulated, the sequence and discrete locus 
results were indistinguishable, suggesting that RMETASIM provides robust output whether sequence or non-sequence 
markers are used.   
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Figure 6:  The observed and expected decay in heterozygosity  
for a haploid sequence or non-sequence locus (Ne = 10). 
 

Similarly, the accumulation of genetic variation appears to follow the expectation for haploid, maternally inherited 
DNA sequences.  Figure 5B depicts the increase to equilibrium for the composite parameter Θ (described in the previous 
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section), calculated from the observed number of segregating sites and compared to the parametric value.  The cumulative 
results of all simulations suggest RMETASIM meets theoretical expectations for both haploid and diploid sequence and non-
sequence markers, and is suitable for simulating the effects of population dynamics on commonly used molecular markers.   
 
Section 3. Flexible input of initial allele frequencies and marker types   

A recurrent issue in simulation modelling is determining the best means to initialize the genotypes and allele 
frequencies used in simulations.  Simulation results should be robust to initial conditions in order to provide confidence that 
the results can be inferred to natural populations, where historical conditions are unknown.   The current version of 
RMETASIM allows the user to stipulate the type of marker locus, including ploidy, transmission pattern, and mutation 
model.  In addition, one can stipulate the initial number of alleles at each locus and their frequencies.  We examined the 
convergence of RMETASIM to equilibrium values using a range of initial conditions. 
 
Effects of Initial Allele Frequencies 

The robustness of RMETASIM to the use of initial bi-allelic or infinite allele models can be seen in the figures 
showing decay of heterozygosity and divergence among populations.  For the simulations of the decay of heterozygosity 
(Figures 2 and 6) each individual in the first generation was assigned one haplotype (haploid case) or two unique alleles 
(diploid case).  In contrast, for the simulations of diverging populations, linked or unlinked by migration, only two alleles 
were assigned to all populations and these frequencies changed over time due to genetic drift (Figure 3, 4, and  5).   

In simulations with 5 subpopulations with or without migration, individuals were assigned genotypes from a pool of 
10, 100, or 1000 initial alleles.  The number of alleles used to initialize individual genotypes did not affect the rate of 
approach to equilibrium values (results not shown).  Rather, the demographic conditions determined the equilibrium values 
and were of predominant influence on the number of generations necessary to reach those values.  This has been seen in 
previous modelling efforts (Allendorf and Phelps, 1981) (Varvio et al., 1986).  However, there was a slight increase in the 
amount of real time required to run simulations with more initial alleles.  This suggests that little is gained, and simulation 
efficiency is decreased, by using extremely high levels of genetic variation to start simulations.  However, it is also clear that 
RMETASIM meets theoretical expectations regardless of initial allele conditions or molecular marker type.   
 RMETASIM is equipped with a flexible means of choosing the number of alleles to initialize the genotypes.  An 
alternative means of initialising the genotypes is to use values drawn from the coalescent to determine allele frequencies.  
The coalescent provides a means of initialising initial allele frequencies that is robust to population history and 
computationally efficient, which could save vast amounts of TOSSM simulation time.  We are currently developing scripts to 
employ the coalescent program SIMCOAL (v. 1.0, (Excoffier, 2000)) to create allele frequency distributions, which will then 
be used within RMETASIM to initialize individual genotypes. 
 
Section 4.  Incorporation of whale demography 
 It is apparent from the previous sections that RMETASIM has demographic and genetic algorithms that match 
theoretical expectations quite well.  However, the use of RMETASIM for TOSSM is justifiable only if RMETASIM 
adequately incorporates the necessary subtleties of whale demography and can produce data sets of similar size and detail to 
empirical ones.  Consequently, we tested the ability of RMETASIM to accurately incorporate whale demography, to produce 
data sets similar to empirical data sets for baleen whales, and the relative influence of some important parameters on the 
speed of the simulations.  
 
Population Growth 

Simulations were conducted using a more advanced Leftkovich matrix model designed by Martien et al. 
(SC/56/SD5) to closely approximate gray whale (Eschrichtius robustus) demography.  Martien et al. present two matrices, 
one of which describes life history parameters near zero population density (Table 1A, henceforth referred to as the ‘zero 
population density matrix’), the other of which describes the parameters near carrying capacity (Table 1B, the ‘carrying 
capacity matrix’).  We ran simulations using each of these matrices separately to ensure that the demographic behavior of 
RMETASIM conformed to expectations from matrix model theory.  We started the population at a stable age distribution far 
below K and compared the observed growth rate obtained for each of the life history matrices to that expected based on the 
dominant eigenvalue of matrix (Caswell, 2001).   
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Table 1.  Life history matrices from Martien et al. (SC/56/SD5) 
 A. Zero population density   B. Carrying capacity 

 Juve1 juve2 fert Lact male 
juve1 0.730 0 0 1.0 0 
juve2 0.210 0 0 0 0 
fert 0 0.47 0 0.946 0 
lact 0 0 0.946 0 0 
male 0 0.47 0 0 0.954 

 
When we used the carrying capacity matrix (lambda = 1.00), the observed growth rate matched the deterministic 

values obtained from theory.  However, when we used the zero population density matrix (lambda = 1.07), we uncovered 
model behavior that did not match expectations based on standard matrix model theory for an expanding population.  
Subsequent investigations by the authors of this report and RMETASIM’s primary author revealed incorrect demographic 
algorithms in RMETASIM that caused the observed population growth rates to exceed the expected values.   These problems 
stem from the way in which the reproduction and survival matrix elements are combined and multiplied by the stage vector in 
RMETASIM.  Currently, RMETASIM is being revised by its author to address these problems, and a fully-functional version 
that matches standard matrix model expectations should be available in the next few weeks.  The problems with the 
demographic algorithms in RMETASIM did not affect the other simulations described in this report.   
 
Mutation Rates and Genetic Variation 
 We also examined genetic summary statistics produced by RMETASIM with different mutation rates, population 
sizes, and the aforementioned gray whale demographic matrix with positive growth rate (λ = 1.07) (Martien et al., 
SC/56/SD5).  We then compared the model results to an eastern gray whale genetic dataset kindly provided by Richard 
LeDuc.  The dataset included mtDNA control region sequences (an expanded version of the dataset described in (Leduc et 
al., 2002)) and data from 7 microsatellite loci.  The motivation for this comparison was to ensure that RMETASIM would 
produce summary statistics similar to observed data sets using population sizes corresponding to reasonable values for the 
eastern gray whale population, and realistic mutation rates obtained from empirical data.  In addition, if the results are 
reasonable, we can use the best mutation rate estimates to help narrow the parameter space used in subsequent simulations for 
TOSSM. 

For these simulations, the population was initialized at N=K, so that the positive population growth rate would keep 
the population near K for the entire simulation.  Mutation rate estimates for microsatellite and mtDNA sequence data were 
obtained from the human genetics literature, and used to obtain a high and low estimate for each marker type to bracket the 
likely values observed in real whale data sets .  The high and low microsatellite mutation rates used were 2 x 10-3 and 2 x 10-
4/locus/generation, respectively (Kayser et al., 2000; Zhivotovsky et al., 2004).  The mtDNA mutation rates we used were 5 x 
10-3 and 5 x 10-5/locus/generation, based on estimates from the control region (Heyer et al., 2001; Sigurdardottir et al., 
2000).  Population size estimates for the eastern gray whale stock range from ~16,000 to 27,000 (Rugh et al., 1999; Punt, 
pers. Comm.); so we used values of 15,000, 20,000, and 30,000. 

These parameter estimates were used in simulations of whale population dynamics for 10,000 time steps.  Each set 
of conditions was simulated 10 times, and at each time step a sample of 100 individuals was drawn from the population.  The 
observed distributions of genetic summary statistics for diploid 8 microsatellite loci and a 500 base sequence (locus) of 
mtDNA were compared to empirical data sets for the eastern gray whale.    An example input file for these simulations is 
contained in the Appendix, Part D.   
 Leduc et al. (2002) sequenced the mtDNA control region of a sample from the eastern gray whale population and 
found high haplotype diversity (hd = 0.95) and 33 haplotypes, each with a frequency less than 11% (Leduc et al., 2002).  We 
calculated the mean expected heterozygosity of 0.78 from gray whale dataset of 7 microsatellite loci.  These empirical data 
can be compared to the observed values from the simulations in Figures 7 and 8.   
 Figure 7 shows that the population sizes simulated have relatively little effect on the equilibrium amounts of genetic 
variation.  Although the populations can be expected to reach different levels of genetic variation, their behaviour is similar 
over the time frame shown here. In contrast to the limited effect of population size, the mutation rates, which vary over 1-2 
orders of magnitude, greatly impact the equilibrium levels of genetic variation.  Only high mutation rates, in combination 
with the population sizes examined, bring the simulated levels of genetic variation close to that observed in the real sample.   
 Figure 8 shows the distributions of mtDNA haplotypes at the end of the simulations for a population of moderate 
size (N = 20,000), for both the high and low mtDNA mutation rates.  The distribution for the high mutation rate is right 
skewed, and shows many haplotypes that occur in only one or a few copies in each sample.  This distribution is similar to the 
empirical data set.  In contrast, the distribution for the low mutation rate includes one very common allele and a rare allele, 
which demonstrates that the low mutation rate is unlikely to generate the observed distribution of haplotypes.  Although the 
data are not shown, the general distribution of haplotypes was relatively insensitive to the population sizes simulated 

 Juve1 juve2 fert lact male 
juve1 0.797 0 0 1.0 0 
juve2 0.123 0.718 0 0 0 
fert 0 0.101 0.648 0.946 0 
lact 0 0 0.300 0 0 
male 0 0.101 0 0 0.954 
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(N=15,000, 20,000, 30,000).  That is, all high mutation rate simulations produced highly diverse, skewed haplotype 
distributions and all low mutation rate simulations produced one very common haplotype with one or two uncommon ones.   
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Figure 7:  Expected microsatellite (usat) heterozygosities and mtDNA (mt) haplotype diversities for samples (n = 100) drawn 
from simulated whale populations with high and low mutation rates and N = 15,000 (A), 20,000 (B), or 30,000 (C) 
individuals.  Horizontal lines provide empirical values from mtDNA (upper) and microsatellite (lower) data sets. 
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Figure 8:  The frequency distribution of mtDNA haplotypes at the end of 10,000 time steps for a population.  Haplotypes are 
ordered from most to least common in each sample (n = 100). 
 The simulated whale populations produced a wide range of heterozygosities, haplotype diversities, and haplotype 
distributions, independent of the population size.   From these simulations and figures, it would appear that the higher end of 
the mutation rate estimates are better approximations to what is seen in whale data sets, assuming whale population effective 
sizes are not many orders of magnitude larger than those approximated by the population size used in this simulation.  Such a 
substantial deviation is highly unlikely.  Because these simulations were conducted using demographic parameters from 
eastern gray whales, the ratio of effective population size to census size (Ne/N) from the simulations should be similar to that 
for the real population.  Deviations from the simulated ratio could be caused by a mating system that is more skewed than 
that simulated, or if the long-term harmonic mean abundance of the real population is significantly reduced due to the 
bottleneck imposed by historic whaling.  However, both of these sources of bias would cause the ratio of Ne/N in the 
simulations to be positively biased, which would result in an underestimate of the mutation rate.  Thus, it seems safe to 
conclude that the actual microsatellite and mtDNA mutation rates in eastern gray whales are near the upper end of the ranges 
we examined.  
 
Demographic and Genetic Effects on Simulation Times 
 Finally, we examined the relative and absolute time required to run simulations of different levels of complexity 
(Table 2).  This was done to provide insight into which parameters most affect the speed of the RMETASIM simulations, and 
what sorts of scenarios may be compared in a realistic time frame given the speed and number of computers available for 
TOSSM applications.  
 The type of molecular marker (discrete or sequence) has very little effect on the speed of simulations.  And, for 
sequence markers, the length of the sequence has almost no effect.  The number of diploid loci simulated had detectable 
effects on simulation rate.   However, an increase in the number of loci from 1 to 10 less than doubled the simulation time, so 
the effect of number of loci is unlikely to be great unless many tens of markers are used. 
 
Table 2:  Absolute time (secs) required to run 10 replicates of whale demography simulations with varying numbers of 
populations, individuals/population (Popsize), and unlinked loci or sequence lengths.  Each iteration was run for 100 time 
steps. All simulations were run on a 1.2 GHz laptop with 512 MB Ram and Windows XP OS. 

1 Population 
Popsize  # 2N Loci  1N Sequence Length 

  1 10 20  100 500 
100  0.40 0.76 1.11  0.39 0.38 

1000  4.26 8.10 12.76  4.00 3.89 
10000  61.73 117.37 158.35  57.57 59.10 

5 Populations 
Popsize  # 2N Loci  1N Sequence Length 

N  1 10 20  100 500 
100  2.81 4.29 5.95  2.59 2.63 

1000  32.01 53.35 74.83  30.46 31.05 
10000  386.02 662.82 1004.70  394.33 423.87 

Diploid loci followed the infinite mutation model (rate = 0.001) and initialized with 2 alleles/locus.   
Haploid loci were initialized with 2 alleles/locus (rate = 0.005). 
Mitochondria DNA sequences were simulated as unlinked loci following a Jukes-Cantor mutation model  
(rate = 0.005) and initialized with 2 haplotypes/locus. 
 
    
 It is apparent that the greatest effect upon simulation speed is, by far, the number of individuals simulated.  This 
makes sense because the model is individual-based, which requires that detailed demographic and genetic records be kept for 
each individual simulated.  A 10-fold increase in the number of individuals slowed the rate of simulation more than 10-fold.  
This suggests that efforts to decrease the number of individuals simulated will provide the greatest return in efficiency.  It 
took approximately 1 second to run a simulation of 5 populations of 10,000 individuals each with 20 loci for one time step on 
a reasonably fast laptop computer (see Table 2 for specs).  Any increased efficiency by reducing the number of time steps 
could have a large cumulative impact across many scenarios. 
 The number of time steps required to reach equilibrium values of population divergence depends upon an array of 
parameter combinations, including population size, structure, number of populations, migration rates, and mutation rates.  For 
large populations (10,000 or greater) it has been shown that thousands of generations are required if only 1 migrant is 
exchanged among populations per generation (Varvio et al., 1986); Tables 2 and 3).  If migration rates are considerably 
higher, the number of generations to equilibrium decreases rapidly.  Reaching within population mutation/migration/drift 
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equilibrium can take similarly large numbers of generations.  Figure 7 shows the rate of increase to equilibrium levels of  
genetic variation for a single population with high or low migration rates can take thousands of generations, and, for a given 
population size, more time is required for a lower mutation rate.  Given the time requirements shown in Table 2, simulating 
some of the  individual scenarios of interest to TOSSM will require several hours to complete, even with low levels of 
replication (< 100 iterations). 
 
Summary  
 The exercises described in this report have shown RMETASIM to be a well-functioning model that will be adequate 
to meet the needs of the TOSSM project.  The population genetic functions of the model accurately matched theoretical 
expectations for haploid and diploid loci across an array of scenarios that included isolation, migration, no mutation, and 
mutation.  The structure of the model proved flexible enough to allow the incorporation of a complex whale demography that 
included a realistic age at first reproduction and interbirth interval (see Martien et al., SC/56/SD5 for details).  With the 
exception of the demography error noted in section 4, which should be corrected by the time of the Sorrento meeting, the 
output of the model met theoretical expectations from both demographic and genetic theory across a suite of conditions.   
 A few tasks remain before the model will be ready to generate simulated datasets.  First, the coding error described 
in section 4 must be fixed.  Allan Strand, the original author of RMETASIM, is correcting this mistake and expects to have a 
corrected version available by the end of June, 2004.  Second, we need to implement density dependence in the model.  This 
will be achieved by interpolating between two sets of demographic parameters, those expected at zero population density and 
those expected at carrying capacity, as described in Martien et al. (SC/56/SD5).  This approach will allow density 
dependence to act on any life history stage.  The algorithm has already been coded and will be implemented and debugged as 
soon as a corrected model is received from Allan Strand. 
 The third remaining task is the incorporation of a coalescent model for initialising haplotype and allele frequencies.  
We are currently in the process of writing the necessary scripts to integrate the coalescent program SIMCOAL (Excoffier, 
2000) RMETASIM.  We expect this task will be completed by mid-July.   
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Appendix:  
 
Part A.  Details of RMETASIM matrices. 

RMETASIM can be thought of as a matrix of matrices that handle within and between population demography.  
Collectively these matrices form a metapopulation.  Within-population demography consists of survival, male and female 
reproduction.  Consequently, each population’s demography is handled by three matrices, one for each component of 
demography.  Among-population demographic events are handled by another set of matrices that determine the migration of 
individuals and gametes between populations.  Many kinds of survival, reproduction strategies, and migration patterns can be 
accommodated in the metapopulation and these can vary among all populations in the metapopulation.  It is important to 
note, however, that while the demographic parameters are entered and stored in the form of a matrix, METASIM does not 
rely on matrix projections.  Rather, METASIM is an individual-based model (IBM) in which the fate of each individual is 
governed by the transition probabilities specified in the demographic matrices.  Essentially, the demographic options are 
limited only by the constraints imposed by the matrix model structure.  The basic algorithm used in RMETASIM is described 
in Figure 1.   

For many of the simulations described in the main body of the report, the matrices and parameter values used to 
create the RMETASIM populations and metapopulation(s) are described in this Appendix.  (This may be more detail than 
most readers require, but useful to those planning to do simulations of their own.)  It should be possible to mimic, allowing 
for stochastic simulation among iterations, the results presented above by using RMETASIM with the following input files.  
Additional help files for running the programming and performing some genetic analyses can be obtained by downloading 
and installing the RMETASIM library. 

One of important aspect of the current version of RMETASIM is that density dependence is imposed as a ceiling, K, 
on population size, N.  For the initial simulations we sought to control the size of the adult stage, in order to control the 
effective size of each population.  Therefore, it was necessary to split each population into a juvenile and adult population 
and then have all juveniles “migrate” into the adult population.  As a consequence, each “population” in a demographic 
sense, consists of a juvenile matrix and adult matrix, each with a population size controlled by its K.  This allowed us to 
tightly control the number of reproductive individuals, and thus ensure that the model meets the expectations from theory that 
hinge upon knowing the number of reproductive individuals.  In other words, as a result of these manipulations, we were able 
to use common population genetic theory to test the model outputs.  As shown below, each population contains two stages 
(two rows and columns) and each biological population (four rows and columns) is a coupled juvenile population and adult 
population.  The example input shown below looks like the following in RMETASIM matrix form, with movement of 
individuals from columns to rows in each time step: 
 
 

 
           

 
 
 

 juve1 juve2 adult1 adult2
juve1 0 0 0 50 
juve2 0 0 0 0 
adult1 0 0 0 0 
adult2 1 0 0 0 
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The upper left quadrant of the matrix represents transitions within the juvenile population and the lower right represents 
transitions within the adult population.  The other two quadrants represent movement between the two populations.  In this 
example, all individuals in the juvenile population survive and move to the adult population with prob(survival+movement) = 
1, as shown in lower left corner of 4x4 matrix. In the adult population, each adult produces 50 offspring, all of which all enter 
the juvenile population (50 in upper right corner), and then dies (as shown by prob(survival) =  0 in lower right corner).  
Under these conditions, there is no survival within the juvenile population or adult population; rather they simply pass 
individuals between them to form one biological population.  By maintaining an overabundance of juveniles (K = 500) 
moving into a smaller adult population (K= 10), we could ensure that the effective size remained constant each generation 
because following each time step the adult population had to be culled from 500 back to its carrying capacity of 10.  We 
examined the distribution of genetic variation in the adult population(s) only. 
  
(Note: I use stage throughout this appendix because stage-based models were used to incorporate whale demography in more 
advanced models, but age is technically the correct term in the present context.)   
 
 
Part B. The following scripts can be used to simulate a single population 50 times and observe the decay in heterozygosity.  
The “#” symbol is used to comment the code without interrupting it, should the reader wish to simply cut and paste the 
following text into R (assuming the RMETASIM library has been installed).  Note the pathway to the output file for this and 
all subsequent examples is currently c:/ outputfilename. 
  
library(rmetasim) 
habitats <- 2 
carryjuvpop <- 500          
carryadpop <- 10          
stages <- 2           
rland <- NULL           
rland <- new.landscape.empty()        
rland <- new.intparam.land(rland, h = habitats, s = stages, totgen = 101)   
rland <- new.switchparam.land(rland, mp = 1) 
rland <- new.floatparam.land(rland)        
              
Sj <- matrix(c(0, 0, 0, 0), nrow = 2, byrow = T)      
Rj <- matrix(c(0, 0, 0, 0), nrow = 2, byrow = T)      
Mj <- matrix(c(0, 0, 0, 0), nrow = 2, byrow = T)      
rland <- new.local.demo(rland,S = Sj,R = Rj,M = Mj)      
 
Sa <- matrix(c(0, 0, 0, 0), nrow = 2, byrow = T)      
Ra <- matrix(c(0, 0, 0, 0), nrow = 2, byrow = T)      
Ma <- matrix(c(0, 0, 0, 1), nrow = 2, byrow = T)      
rland <- new.local.demo(rland,S = Sa,R = Ra,M = Ma)      
             
S <- matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0),nrow = 4,byrow = T)     
R <- matrix(c(0,0,0,50,0,0,0,0,0,0,0,0,0,0,0,0),nrow = 4,byrow = T) 
M <- matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1),nrow = 4,byrow = T) 
rland <- new.epoch(rland,S=S,R=R,M=M,carry=c(carryjuvpop,carryadpop)) 
 
#one could simply change the ploidy of this locus to examine the decay in haploid “het” 
rland <- new.locus(rland, type = 1, ploidy = 2, transmission = 0, numalleles = 1500) 
 
 
rland <- new.individuals(rland, c(500,0,0,10)) 
 
#the routine below simulates 50 replicates, provides heterozygosity every 10 generations, and #then writes this to an output 
file on the C drive. 
numreps <-  50 
numsteps <- 10 
stepsize <- 10 
l.exp <- list(numreps) 
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het <- matrix(nrow=numsteps,ncol=numreps) 
rland.start <- rland 
for (j in 1:numreps) { 
  rland <- rland.start 
  l.exp[[j]] <- list(numsteps + 1) 
  l.exp[[j]][[1]] <- rland 
  for (i in 1:numsteps) { 
    if (dim(rland$individuals)[1]>0) 
      { 
        rland <- simulate.landscape(rland, stepsize) 
      } 
    rland <- rland 
    if (dim(rland$individuals)[1]==0){ 
      print (paste("Exctinction! rep, step",j,",",i)); 
      f <- 0 
    } else { 
      f <- exp.het.landscape(rland)[1] 
                                        #           if (is.na(f)){f <- 0} 
    } 
  het[i,j] <- f 
    l.exp[[j]][[i + 1]] <- rland 
  } 
} 
 
meanhet <- rowMeans(het) 
 
for(i in 1:numreps){ 
    write(c(het[,i]),file=paste("C:/hetout.txt"),ncol=10,append=T) 
} 
 
 
Part C. The following text provides input for simulating the increase in Weir and Cockerham’s θ at a haploid locus for 5 
isolated populations of N = 50.  One need only add the “#” symbol in front of the new.locus line indicating haploid and delete 
the same symbol from the new.locus line indicating the diploid locus to switch between the two ploidy levels.  The 
demographic matrices are described in the previous section. 
 
library(rmetasim) 
habitats <- 10 
carryjuvpop <- 500          
carryadpop <- 50          
stages <- 2           
rland <- NULL           
rland <- new.landscape.empty()        
rland <- new.intparam.land(rland, h = habitats, s = stages, totgen = 101)   
rland <- new.switchparam.land(rland, mp = 1) 
rland <- new.floatparam.land(rland)        
 
for(x in 1:5) { 
Sj <- matrix(c(0, 0, 0, 0), nrow = 2, byrow = T)      
Rj <- matrix(c(0, 0, 0, 0), nrow = 2, byrow = T)      
Mj <- matrix(c(0, 0, 0, 0), nrow = 2, byrow = T)      
rland <- new.local.demo(rland,S = Sj,R = Rj,M = Mj)      
 
Sa <- matrix(c(0, 0, 0, 0), nrow = 2, byrow = T)      
Ra <- matrix(c(0, 0, 0, 0), nrow = 2, byrow = T)      
Ma <- matrix(c(0, 0, 0, 1), nrow = 2, byrow = T)      
rland <- new.local.demo(rland,S = Sa,R = Ra,M = Ma)      
} 
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S <- matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0),nrow = 20,byrow = T)  
  
R <- matrix(c(0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,10, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),nrow = 20,byrow = T) 
   
M <- matrix(c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
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  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1),nrow = 20,byrow = T) 
   
rland <-
new.epoch(rland,S=S,R=R,M=M,carry=c(carryjuvpop,carryadpop,carryjuvpop,carryadpop,carryjuvpop,carryadpop,carryjuvp
op,carryadpop,carryjuvpop,carryadpop)) 
 
#the next two lines indicate the type of marker that will be used in the sims, currently only 1N 
#rland <- new.locus(rland, type = 1, ploidy = 2, transmission = 0, numalleles = 2) 
rland <- new.locus(rland, type = 1, ploidy = 1, transmission = 1, numalleles = 2) 
 
 
rland <- new.individuals(rland, c(500,0,0,50,500,0,0,50,500,0,0,50,500,0,0,50,500,0,0,50))  
 
#need to use lines below to replicate 50 sims and extract wanted theta info to file 
 
numreps <-  50 
numsteps <- 10 
stepsize <- 10 
l.exp <- list(numreps) 
the <- matrix(nrow=numsteps,ncol=numreps) 
rland.start <- rland 
for (j in 1:numreps) { 
  rland <- rland.start 
  l.exp[[j]] <- list(numsteps + 1) 
  l.exp[[j]][[1]] <- rland 
  for (i in 1:numsteps) { 
    if (dim(rland$individuals)[1]>0) 
    { 
      rland <- simulate.landscape(rland, stepsize) 
    } 
    rland <- rland 
    if (dim(rland$individuals)[1]==0){ 
      print (paste("Exctinction! rep, step",j,",",i)); 
      fst <- 0 
    } else { 
           rt = landscape.to.rtheta(rland) 
      rt.sub = rt[rt$pop %in% c(2,4,6,8,10),] 
           fst <- popstruct(rt.sub)[1] 
    } 
    the[i,j] <- fst 
    l.exp[[j]][[i + 1]] <- rland 
  } 
} 
 
meanthe <- rowMeans(the) 
 
for(i in 1:numreps){ 
    write(c(the[,i]),file=paste("c:/thetaout.txt"),ncol=10,append=T) 
} 
 
 
Part D. 
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The text below can be cut and pasted to simulate a baleen whale population (N = 20000) based on a gray whale demographic 
matrix.  The simulation includes 8 nuclear loci and 1 mtDNA sequence of 500 bases, sampled for 100 individuals every 1000 
time steps.  Ten replicates are simulated and an array of genetic summary statistics are obtained. Note that it is necessary to 
have the “ape” package, as well as the RMETASIM package, installed in order to use these scripts. 
 
library(rmetasim) 
library(ape) 
 
habitats <- 1 
carrycap <- 20000 
stages <- 5 
rland <- NULL 
 
rland <- new.landscape.empty() 
rland <- new.intparam.land(rland, h = habitats, s = stages, totgen = 10001) 
rland <- new.switchparam.land(rland, mp = 1) 
rland <- new.floatparam.land(rland) 
 
S <- matrix (c(0.730, 0, 0, 0, 0, 
        0.210, 0, 0, 0, 0, 
        0, 0.470, 0, 0.946, 0,      
        0, 0, 0.946, 0, 0, 
        0, 0.470, 0, 0, 0.954), nrow=5, byrow = T) 
 
R <- matrix (c(0, 0, 0, 1, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0), nrow = 5, byrow = T) 
 
         
M <- matrix (c(0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 0, 
        0, 0, 0, 0, 1, 
        0, 0, 0, 0, 0), nrow = 5, byrow = T) 
 
rland <- new.local.demo(rland,S,R,M) 
rland <- new.epoch.island(rland,0,c(0,0,0,0,0),c(0,0,0,0,0),0,c(0,0,0,0,0),c(0,0,0,0,0), 
0,c(0,0,0,0,0),c(0,0,0,0,0), carry = rep(carrycap,habitats)) 
 
rland <- new.locus(rland, type = 1, ploidy = 2, transmission = 0, numalleles = 1, mutationrate = 0.002) 
rland <- new.locus(rland, type = 1, ploidy = 2, transmission = 0, numalleles = 1, mutationrate = 0.002) 
rland <- new.locus(rland, type = 1, ploidy = 2, transmission = 0, numalleles = 1, mutationrate = 0.002) 
rland <- new.locus(rland, type = 1, ploidy = 2, transmission = 0, numalleles = 1, mutationrate = 0.002) 
rland <- new.locus(rland, type = 1, ploidy = 2, transmission = 0, numalleles = 1, mutationrate = 0.002) 
rland <- new.locus(rland, type = 1, ploidy = 2, transmission = 0, numalleles = 1, mutationrate = 0.002) 
rland <- new.locus(rland, type = 1, ploidy = 2, transmission = 0, numalleles = 1, mutationrate = 0.002) 
rland <- new.locus(rland, type = 1, ploidy = 2, transmission = 0, numalleles = 1, mutationrate = 0.002) 
rland <- new.locus(rland, type = 2, ploidy = 1, transmission = 1, numalleles = 1, allelesize = 500, mutationrate = 0.005) 
 
 
mrate <- rland$loci[[1]]$rate[[1]]             
                     
rland <- new.individuals(rland, c(7400,1400,2800,2600,5800))        
 
ss <- 100               
numreps <-  10 
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numsteps <- 10 
stepsize <- 1000 
l.exp <- list(numreps) 
Nu4 <- matrix(nrow=numsteps,ncol=numreps) 
het <- matrix(nrow=numsteps,ncol=numreps) 
na <- matrix(nrow=numsteps,ncol=numreps) 
knuc <- matrix(nrow=numsteps,ncol=numreps) 
hnuc <- matrix(nrow=numsteps,ncol=numreps) 
mtDNAt <- matrix(nrow=numsteps,ncol=numreps) 
mthd <- matrix(nrow=numsteps,ncol=numreps) 
mthaps <- matrix(nrow=numsteps,ncol=numreps) 
mtbin <- matrix(data=0,nrow=numreps,ncol=ss) 
 
 
rland.start <- rland 
for (j in 1:numreps) { 
  rland <- rland.start 
  l.exp[[j]] <- list(numsteps + 1) 
  l.exp[[j]][[1]] <- rland 
  for (i in 1:numsteps) { 
      rland <- simulate.landscape(rland, stepsize) 
      rland <- rland 
      rland2 <- rland 
      rland2$individuals <- rland$individuals[1:ss,] 
      alvec <- vector("list",length(rland2$loci)-1) 
      acnt1 <- allelecount.landscape(rland2)  
      cnt <- 0 
      for (k in 1:length(alvec)) 
        { 
          alvec[[k]] <- acnt1$Freq[(acnt1$pop==1)&(acnt1$loc==k)] 
          cnt <- cnt + length(alvec[[k]]) 
        }    
      het[i,j] <- mean(exp.het.landscape(rland2)[1:8]) 
      na[i,j] <- cnt/length(alvec) 
      knuc[i,j] <- mean(theta.k.landscape(rland2)[1:8]) 
      hnuc[i,j] <- mean(theta.h.landscape(rland2)[1:8]) 
      mtDNAt[i,j] <- theta.s.landscape(rland2)[9]   
      mthd[i,j] <- exp.het.landscape(rland2)[9] 
      mthaps[i,j] <- length(acnt1$alleles[(acnt1$loc==9)]) 
      l.exp[[j]][[i + 1]] <- rland 
  } 
  x <- sort(acnt1$Freq[(acnt1$pop==1)&(acnt1$loc==9)],decreasing=T) 
  for(h in 1:length(x)) { 
   mtbin[j,h] <- x[h] 
  } 
} 
 
meanNu4a <- rowMeans(knuc) 
meanNu4b <- rowMeans(hnuc) 
meanhet <- rowMeans(het) 
meanna <- rowMeans(na) 
meanhd <- rowMeans(mthd) 
meanhaps <- rowMeans(mthaps) 
mtbinned <- colMeans(mtbin) 
 
vtha <- c(0,numsteps) 
vthb <- c(0,numsteps) 
vhet <- c(0,numsteps) 
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vna <- c(0,numsteps) 
vhd <- c(0,numsteps) 
vhaps <- c(0,numsteps) 
for (i in 1:numsteps){ 
   vtha[i] <- var(knuc[i,]) 
   vthb[i] <- var(hnuc[i,]) 
   vhet[i] <- var(het[i,]) 
   vna[i] <- var(na[i,]) 
   vhd[i] <- var(mthd[i,]) 
   vhaps[i] <- var(mthaps[i,]) 
   } 
 
vhbin <- c(0,ss) 
for (i in 1:ss){ 
  vhbin[i] <- var(mtbin[,i]) 
  } 
 
write(c("u=",mrate,"  K=",carrycap),file=paste("C:/output.txt"),ncol=4,append=T) 
write(c("reps =",numreps,"  stepsize =",stepsize),file=paste("C:/output.txt"),ncol=4,append=T) 
write("meantheta k-alleles (var)            meantheta heterozygosity (var)               meanhet(var)          mean#alleles(var)             
meanmtDNAhd(var)           mean#mtDNAhaps(var)",file=paste("C:/ output.txt"),ncol=1,append=T) 
   for(i in 1:numsteps) { 
      write(c(meanNu4a[i],vtha[i],"      ",meanNu4b[i],vthb[i],"      ",meanhet[i],vhet[i],"     ",meanna[i],vna[i],"     
",meanhd[i],vhd[i],"   ",meanhaps[i],vhaps[i]),file=paste("C:/ output.txt",collapse=" "),ncol=17,append=T) 
    } 
write(" ",file=paste("C:/output.txt"),ncol=1,append=T) 
write("haplotype mean and variance",file=paste("C:/output.txt"),ncol=1,append=T) 
for(i in 1:ss) { 
      write(c(mtbinned[i],vhbin[i]),file=paste("C:/output.txt",collapse="    "),ncol=17,append=T) 
    } 
write(" ",file=paste("C:/output.txt"),ncol=1,append=T) 
write(" ",file=paste("C:/output.txt"),ncol=1,append=T) 
 
 
 
 


