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ABSTRACT 

The standard recursive function formulation of dynamic programming is shown to 
extend readily to a problem with multiple objectives. A stochastic model is formulated 
which is relevant to capital accumulation models, renewable resource management, and 
economic growth. For relevant special cases, it is proven that the knowledge of the single 
objective optimal policy functions is sufficient to completely describe the set of dynami- 
cally Pareto optimal (or nondominated) policy functions for the multiple objective 
problem. It is also shown that there is a single policy which is optimal for three related 
problems: When each objective is given even weighting; when the total “regret” is 
minimized; and when the maximum regret is minimized. 

I. INTRODUCTION 

Most models of stochastic decisionmaking concentrate on optimal poli- 
cies for single objectives, while most decisionmaking situations involve 
multiple, often conflicting objectives. While single objective optimization 
can be informative to the decisionmaker, it does not provide any idea of the 
tradeoffs involved. In this paper the usual dynamic programming formula- 
tion for stochastic models is shown to readily extend to stochastic models 
with multiple objectives. This fact is then used to characterize the dynamic 
Pareto optimal set for a class of models relevant to capital accumulation 
and the harvesting of renewable resources. 

A related extension of dynamic programming to partially ordered sets 
can be found in Brown and Strauch [2]. At the time an earlier version of 
this paper was written, Henig [6] was extending the contraction mapping 
formulation of Denardo [3] to multiple objectives. 

The impetus for this paper comes from the recently enacted Fishery 
Conservation and Management Act (FCMA), whch requires fishery 
managers to consider biological, social, and economic factors when de- 
termining an optimal yield. Usually these factors have conflicting goals, yet 
a single “best” policy must be determined. A starting procedure would be to 
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find some desirable subset of policies, and then consider the tradeoffs 
between these policies. Pareto optimal, or “efficient,” policies are such a 
class of policies. 

I have shown previously [9- 111 that stochastic harvesting models are 
structured capital accumulation models that have structured optimal poli- 
cies. Similar structure in the multiple objective problem make it possible to 
describe the set of efficient policies solely from knowing the single objective 
optimal policy functions. This “uncoupling” of a k-objective problem into k 
single objective problems greatly increases computational efficiency, and 
adds insight into the structure of the set of efficient policies. 

It is also possible, for this class of harvesting models, to find several 
policies of interest within the set of efficient policies with little extra effort. 
Let the k-vector J* be the optimum optimorum vector, and let the k-vector 
J be the expected return from a given policy. That is, J*’ is the optimal 
expected return in a single objective problem with objective i as the sole 
objective. The “p-regret function” R , ( J )  [14] is defined as 

p = w ,  
)’” 

k 
R , ( J ) = [  ( i -  I (J*’ -J’ )P , p<O0, 

max( J*’- J ’ ) ,  
i 

and it is desired to minimize R J J )  for a fixed value ofp. Attention is given 
to p = 1, or (the total group regret problem) and p = 00 (the Chebyshev, or 
minimum maximal, regret problem). A third policy of interest maximizes 
the unweighted sum of the two objectives. This will be termed the “equita- 
ble policy.” The stochastic models of this paper have the interesting prop  
erty that a policy that is equitable also minimizes R , ( . )  and R, ( . ) .  

11. NOTATION AND DEVELOPMENT 

A Markov process is observed for T periods, T <  00. The periods are 
subscripted by t, 1 < t < T. Alternatively, n= T-t + 1, the number of pen- 
ods remaining till the end of the planning horizon, is used to subscript the 
period. At the start of each period a state x EX is observed; a decision y is 
chosen, which may be constrained by the state to lie in some set Y ( x ) ;  and 
the random transition to a state next period is given by 

x , + I = 4 x , , Y , , D , l 9  

where D,  , D2,. . . , D, are independent, identically distributed random vari- 
ables distributed as the generic random variable D. 

In each period, if state x is observed and decision YE Y ( x )  is chosen, 
k one - period rewards are received, given by G, ( x ,  y ) = (g: ( x ,  y ), 
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gf(x, y), . . . , g:(x, y)). The i th reward is discounted by a factor ai, 0 < a, 
< 1. 

Let St( x) be a policy function in period t, that is, 6, maps each x E X  into 
Y(x). An n-period policy n,, is a sequence of n policy functions, that is, 

A t-period history H, is a sequence of feasible states, actions, and 
rn=(&,  & - I , . . * ,  81)- 

random variables 

The expected value of an n-period policy n,,, given a history H T - , , + l ,  is 
defined as 

I \ 

where the addition of the vector return is coordinate by coordinate, and 
af-IGf denotes coordinate by coordinate multiplication of gl by a:-'. 
Define the set VT as 

VT= { u,,,( xI) : nT is a feasible T-period policy } . 
Then T; is termed efficient or Pareto optimal if there does not exist some 

other policy pT with uwT(xI)E VT such that 

U u r ( X O  Uw:(X,). (2.2) 

Let AT=(u,,,.E V,: aT is an efficient policy}. The vmax, or vector maxi- 
mization operator, is defined as 

vmax: V T + A T .  

At times, a slightly abused use of vmax denotes finding efficient policies 
rather than efficient vectors. However, the usage should be clear from the 
context. 

With these definitions, the n-period problem is 

(2-3) 

T 

vmax uWr( XI) = vmax E 2 aI-'G,( x , ,  y,  L-, 
SA. xt+I=s[xl ,Yl,4],  

Yf E qx ) .  

'When comparing two k-vectors, x-(x',x2 ...., x k )  and y - ( y ' , y 2  ,..., yk). x-y 
implies xi-y' for all i; x >y implia x i  >y i ;  x >y implies x >y but x+y; and x>y implies 
x'>yi for all i. 
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Let f,""(x) denote the set of n-period efficient return vectors when x is the 
observed state, and let @ denote the addition of a given vector to every 
vector in a set of vectors. Thus G,,+I(x, y)@f,"'"(x) adds the vector 
G,,+,(x ,y)  to each vector in f,""(x). Theorem 2.1 proves that f,"'"(x) 
satisfies the standard dynamic programming recursive equations. 

THEOREM 2.1 

If G f ( x ,  y )  is bounded for every t ,  then in (2.3): 

(i) Zf a policy ..,* is n-period eflicient, then any k-period policy n k  such that 

(ii) An n-period efficient policy depencis on the past history on& through the 
T: = {a,, 6,- I , .  . . , 

present state and expected efficient values, that is, 

rk} is k-period efficient given the history HT-k+ ,. 

074 HI ) = UT( xt 1. 

(iii) 

(a) If there exists a nonempty set of dynamic efficient policies, then every 
efficient policy is a solution to the recursive equation 

fo ' f f (  .)EO, 

f,"" (x  ) = vmax{ G,,( x y ) @cYE'!~ ,( s [ x , y , D ] : x E X  y E Y( x)  } . 
(2.4) 

(b) If there exists a sequence of point to set functions A,,  A,, . . . , AT such that 
Ai : X+ Y( x) and the set of resulting policies solve (2.4), then the sequence of 
functions { A i (  x)} describe the set of dynamic Pareto optimalpolicies. 

The system of recursive equations imply that the set of dynamic efficient 
policies can be found by ' 

(i) choosing an efficient decision in period n ,  
(ii) following any efficient policy from there onwards. 

This is a subtle point, for in Sec. 111 it will be shown that for a class of 
problems, the weightings given to each objective by an efficient policy can 
vary through time. 

111. APPLICATIONS 

In this section, the system of recursive equations (2.4) and related 
systems of equations are used to describe dynamic efficient policies for two 
harvesting or consumption models. In the first model, a single stock of fish 
(or consumption good) is valued differently by two different user groups. 
This occurs in a fishery context when the government is the management 
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that must set a quota on a fishing industry, but recreational fishermen or 
other interest groups also value the standing stock as an important resource. 
Such a situation arises in the management of the northern anchovy off the 
coast of California. 

The second model is a single stock that is managed by a single agency, 
where harvesting or consumption each year must be allocated between 
different user groups. The agency must decide not only the total amount to 
be allocated, but also how much of the total allocation should be given to 
each user group. This model differs from related economic work in that the 
model is dynamic and stochastic. 

Lemma 3.1 is due to Geoffrion [4], and is used throughout this section. 

LEMMA 3.1 

Let f l ( x ) ,  f 2 ( x ) ,  ..., f & ( x )  be concaue functions that map a subset of 6t" into 
R'.  Then the following two statements are equivalent: 

(i) x* is an argument where 

obtains a solution. 
(ii) x* is an argument where 

k 

max X i f , ( x )  
i =  1 

k 
s . t .  2 Xi=l, O < X i < l  foral l i  

i -  1 

obtains a solution for some X = (A', X 2 ,  . . . , Ak). rn 
Let x ,  denote the population size at the beginning of period t ,  and let y,  

be the population size remaining after harvesting has ceased. The transition 
to x,+  depends only on y, and the random variable D,, that is, 

X I +  I = s [YI 9 0, I -  

It is assumed that: 

(i) s[ a ,  d] is concave and continuous for each realization d of D,. Each 
user group's one-period return or utility is assumed to be a function of the 
amount harvested, x, -y , .  This is a simplifying assumption, as for some 
fisheries the cost of fishing varies greatly with the amount available at the 
beginning of the period. However, most of the results do not depend on this 
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assumption so much as on the following two assumptions, which are 
assumed to be valid for si( -) for each user group i .  

(ii) g ' ( - )  is concave, bounded, and continuous on the set 'C- { ( x ,  y ) :  

(iii) g i ( . )  is nondecreasing. (For the more general case, an additional 
XEX, O < y < x }  

assumption that gl21(*, y )  is nondecreasing in x is needed.) 

These assumptions are discussed in more detail in [9- 111. 
With n periods remaining till the end of the planning horizon, and for 

any x E X ,  assume that all k single objective policy functions 
A!,( x ) ,  A:( x ) ,  . . . , A:( x)  are known, and reorder the index such that 

A ! , ( x )  < A : ( x )  < - < A : ( x ) .  

Let A,(x,  A )  be an optimal policy in period n for x E X  and given weights A. 

THEOREM 3.1 

Assumptions (i)-(iii) imp& for the problem giwn in (2.4) that for each n and 

(i) A decision y is part of an efficient policy if and on& if 

eoery xEX:  

A ! , ( x )  < y  < A : ( x ) .  

(ii) The set of dynamic efficient policies is to choose any y as in (i), and then 
follow any (n - 1)-period efficient policy thereafter. 

Theorem 3.1 decomposes the multiple objective problem into k single 
objective problems. Moreover, since every solution implies a relative weight- 
ing to the different objectives, part (ii) of the theorem states that there exist 
dynamic efficient policies whose relative weighting can shift through time. 
This at first seems unreasonable, but two explanations can be given to this 
fact. A shift of weighting can be thought of as an adjustment to the 
realization of the stochastic process, rather than to its expected value. The 
realization may overly favor one group over another, and a shift in weight- 
ings can serve as a correction. 

Secondly, a shift in weightings can be viewed as a learning process. A 
decisionmaker's preference may in fact switch as he or she learns more 
about the actual consequences of their decisions. 

If the largest and the smallest values of the set of efficient policies greatly 
differ in value, then the set of efficient policies does not lend much insight. 
An initial starting point for a good decision might be y = ( l / k ) [ Z ~ - , A ! , ( x ) ] .  
Corollary 3.1 suggests a second policy with desirable properties. 
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COROLLARY 3.1 

The assumptions of Theorem 3.1 impb that for each n and every x E X ,  an 
equitable policy also minimizes the total group regret and minimizes the 
maximum regret. 

The equitable policy by definition maximizes the total even 
weighted sum of the objectives. Therefore it must minimize the total 
deviation from the optimum optimorum vector. 

Zangwill [ 151 proves that if k functions g,( x ) ,  g,( x ) ,  . . . , gk( x )  are pseu- 
doconcave, then necessary and sufficient conditions in order to 

Proof. 

max min { g i ( x ) )  
x i  

are 
k 

V'g' (x)*w'=O,  O'>O,  
i -  1 

2 w'> 0. 
i 

R , ( J )  is to 

min max { 4.*-4}, 
x i  

where 4* -4 is convex. This is equivalent to 

max min { J i - J ; } ,  
x i  

where 4 -45 is concave. 
The above necessary and sufficient conditions, however, are identically 

the Kuhn-Tucker conditions for the dynamic programming problem [8] 

The second model concerns the dynamic allocation of a catch quota 
between user groups. Let z; be the amount of the catch allotted to group i in 
period 1. Assume each user group's one-period return satisfies assumptions 
(i)-(iii), as well as 

with equal weights. 

(iv) g;(.z,)=g:(z;), i=  1 ,..., k ,  

that is, each user group's return depends only on the amount that it 
harvests, independent of the one-period harvest of the other groups. 

Assume z,!(x), ..., z ; ( x ) ,  are optimal policy functions for each group 
when they are the only one considered, and for convenience the numbering 
will always be such that they are in ascending order. 

I__- -- 
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THEOREM 3.2 

For each n and every x E X ,  assumptions (i)-(iv) imply the following: 

(i) z,=(z!,, ..., 2,") is part of an efficient policy i f  and only i f  zL(x)  Q 

(ii) For any fixed total harvest z ,  let z * be the solution to 
Z f - , , z f  Q z,k(x).  

k 

maximize 2 A'g'(z ')  
I -  1 

k k 

s. t .  z ; = z ;  2 Ai=l, O G A I Q  1. ( 3 4  
i -  1 I=  1 

Then the dynamic recursion can be decomposed into finding an optimal z= 
Zf- and allocating the total according to (3.2). 

(iii) A dynamic efficient policy is to choose z ,  as in (i), and following any 
efficient policy till the end of the planning horizon. 

Theorem 3.2 has intuitive economic appeal. It states that while the total 
quota may vary according to the state observed and the period, the 
allocation, given a fixed quota, is the same in each period. 

Theorem 3.2 also states that it is not desirable in the long run to have a 
quota smaller than that which is the smallest desired for any single user, nor 
larger than that desired by any user. This is true, even though some if not 
all users will be receiving less than their sole optimum catch as their share 
of the catch. Each share will be determined by the relative weights given the 
k objectives. 

COROLLARY 3.2 

The assumptions of Theorem 3.2 imply that an equitable policy also mini- 
mizes the total group regret and minimizes the maximum regret. 

Proof. Same as that for Corollary 3.1. 

IV. DISCUSSION AND EXTENSIONS 

Theorem 2.1 presents a methodology for, and Theorems 3.1 and 3.2 
describe efficient policies for, a class of multiple objective problems related 
to consumption or harvesting models. Traditionally in economics, conflict- 
ing objectives or allocations have been treated by pricing mechanisms. 
Unfortunately, many of the objectives in managing natural resources are 
difficult to price, but a utility function or preference ordering is often easy 
to define. 

It is also clear that for any efficient policy chosen, the weights h' act as 
relative prices of the different objectives of the user groups. Each efficient 
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policy has an imputed relative price, which can then be determined. The 
knowledge of the imputed relative prices may cause the decisionmaker to 
reconsider the decision; even if not, the methodology of this paper avoids 
some of the artificial pricing schemes that have been developed to evaluate 
natural resources. 

Theorem 3.2 as stated is more appropriate for allocation among groups 
of users than for allocation among individual harvesters or firms, In the 
latter case, capacity constraints would more readily enter the model. As 
long as the concavity assumptions of Sec. I11 remain valid, and only simple 
upper and lower bounds are included for each firm, then the results of 
Theorem 3.2 can be extended readily to the level of the firm. 

For many harvesting models, effort rather than catch is the decision 
variable. For a reasonable set of assumptions, this difference is more 
apparent than real. Let E be the total effort. Assume total catch is a 
function of total effort, i.e., z = h( x, E), where h( e ,  E) is nondecreasing and 
continuous and h ( x ,  a )  is nondecreasing and continuous, and when ap- 
propriate, z ' = ( E i / E ) h ( x ,  E), that is, the ith user's catch is proportional to 
its proportion of the total fishing effort. Finally, assume the one-period 
return satisfies (i)-(iii) in terms of the catch and population size, perhaps 
for the more general form g'(x, y ). 

For Theorem 3.1, note that the catch z = h ( x ,  E), so that y, is bounded 
by h ( x ,  Emin) <y, < h ( x ,  E,,,), where y , = x , - h ( x , ,  E,). The analysis then 
proceeds as in Theorem 3.1. For the problem of allocating the catch as in 
Theorem 3.2, note that z = h ( x , E ) ,  and z ' = ( E ' / E ) h ( x , E ) .  A similar 
argument to that in Theorem 3.2 shows that the total catch is bounded by 
h ( x ,  Emin) < z < h ( x ,  E,,,), and that given the total catch (i.e., given the 
total effort) and the ith group's effort, then z i = (  E' /E) z ,  or conversely, 
given the total catch and the catch of the ith user group, E ' = E ( z i / z ) .  

The above establishes a one to one correspondence between the results 
about the catch and the results for some models based on effort. The 
assumptions relating catch and effort are standard; see for example Ander- 
son [I] or Rxker [ 121. 

A major weakness of Theorem 3.2 is that while the user groups fish on 
the same stock, the total catch does not influence the return to the ith 
group, that is, the groups either do not supply the same market, or else have 
no effect on the price each receives. A more realistic assumption would be 
that each user group's return is of the form 

P i (  j ;J) . Z i ,  

so that the total catch affects the price received. I conjecture that as long as 
concavity is maintained, most of the stated results should be valid for this 
model. 
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APPENDIX 

Proof of Theorem 2.1. The inductive proof follows the standard proof of 
stochastic dynamic programming, and hence will only be outlined. At n = 1, 
the proof is straightforward. 

As an inductive hypothesis, assume the theorem is true in periods 
1,2,. . ., n- 1. Then at period n, T,* is efficient only if there is no n,, such 
that 

where w ~ - , , + ~  is the value of H T - n + l .  Since (ii) is valid at all periods, this 
implies 

which proves (i). 
If at period n, nn-, is not efficient but n,,(y, nn- I )  is efficient, define a 

new policy n: = ( y  , n:- I )  where n,*- I is an efficient policy. Then Ir,' clearly 
dominates n,, , contradicting the assumed efficiency of n,,. Combining results 

Proof of Theorem 3.1. The proof is by induction on k, first showing that 
the theorem is valid at k = 2, and then showing that if the theorem is valid at 
k = I, then it is valid at k = I+ 1. 

k - 2 .  From [4],  it follows that A,(x ,  A )  is continuous in A for fixed x ,  
for each n and all x € X .  Since at A = O  we have A,(x,O)-A!,(x), and at 
A- 1 we have A , ( x ,  I ) = A i ( x ) ,  continuity implies the entire interval 
[A ! , (x ) ,A ; (x ) ]  must be optimal for some value of A, O C A <  1. It remains to 
show that no value outside the interval is optimal for some value of A. 

Assume that at X, O < x <  1, we have A, , (x ,X)<A! , (x ) .  Since A,(x,  .) is 
continuous on [0, I], from the definition of continuity, for any A E(0, I], 

yields the desired system of recursive equations. 

I A n ( x ,  l ) - A n ( x ,  <A:(x)-Ak(x), 

since thedistance betweenA,(x, l)andA,,(x,O)isA;f(x)-Af(x). IfA,(x,X) 
were less than A!,( x ) ,  the inequality would be violated, contradicting the 
continuity of A,( x ,  a ) .  

A similar argument holds for A, (x ,  A ) > A : ( x ) ,  by using the continuity 
of A , ( x , A )  at A-0.  

k = I + l .  Suppose the theorem is valid for k = l .  The induction is to 
show that for k = / +  1 ,  the problem can be transformed into an equivalent 
two-objective problem. 
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Lety=(y1,y2 ,..., y' )besuchthatO<y'<l , i= l ,  ..., l ,2:-lyi=l.Cbn- 
sider the weighted objective 

By appropriate choice of h and y, this weighted objective can be made to 
take on all values as if an (1+ 1)-vector X were chosen with 0 < X i  < 1, 
2 : L i y ' =  1. By the induction hypothesis, the optimum for the I objectives 
must lie between the largest and smallest. From above, the k - 2  case has 
the came property, and the (1+ 1)-objective problem has been transformed 
into an equivalent two-objective problem in (3.1). 

By Lemma 3.1, all efficient policies must solve, 

Theorem 2.1 proves part (ii). 

Proof of Theorem 3.2. 
for some value of A, 

The proof uses a transformation introduced by Karush [7] and later 
exploited by Veinott [13]. Let w l = z I ,  w 2 = z 2 + z 1 ,  ..., W ' = Z ~ - ~ Z ~ .  The 
recursion becomes 

Assume w 2 ,  w 3 , .  . . , w k  are fixed. Then the optimum for w1 is to 

maximize 
o< w' < w2 

h l g ' (  w ' ) + h2g ( w - w ' ) = h I (  w 2  ). 

Let A , ( w 2 )  be the solution of h , ( w 2 )  for each w 2 .  Then by standard 
dynamic programming arguments as in [ 111, h,( w 2 )  is concave, continuous, 
and nondecreasing in w 2 .  This argument can be repeated till the recursion 
can be written as 
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where h k -  w k )  is concave, continuous, and nondecreasing, and g k (  w k  - 
, 4 k - l ( ~ k ) )  is concave in w k .  This proves (ii), as the problem has been 
transformed into one that depends only on w k ,  and an allocation given w k  
that solves (3.2). The proof of (i) again is by induction on k .  

From [4], an optimal solution is continuous in A on [0,1]. Since at 
A = O  an optimal total amount to be harvested is z i * (x ) ,  and at A =  1 an 
optimal total amount to be harvested is z;( x ) ,  then continuity implies every 
total harvest in the interval [z;(x), z i * ( x ) ]  must also be part of an efficient 
policy. Therefore, it remains to be proved that no total harvest outside of 
the interval is part of an efficient policy. However, the same continuity 
arguments as those in Theorem 3.1 imply this result. 

The inductive argument is the same as that in Theorem 3.1. 

k = 2 .  

k=Z. 
Theorem 2.1 proves part (iii). 
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