Increasing numbers of green turtles afflicted with debilitating fibropapillomas (fibrous epithelial growths) have been recorded during recent years in the Hawaiian Islands (Balazs 1986; Daley and Balazs 1987). A concurrent increase in parasitism by Ozobranchus has also been seen, especially on the turtles diseased with tumors. Fibropapillomas are highly vascularized, thereby affording ideal sites for leeches to attach. The relationship between Ozobranchus and fibropapillomas was first described by Nigrizi and Smith (1943).

Experimental prophylaxes on captive sea turtles parasitized by Ozobranchus have included the use of various toxic agents. Schwartz (1976) immersed captive loggerheads, Caretta caretta, and green turtles in copper sulfate solution; the treatment proved effective in eliminating O. margini adults and their egg cases but induced increased swimming activity in the turtles. Concentrated topical iodine used by Schwartz (1974) was only temporarily effective. Davies and Chapman (1974) reported that 30 of 85 captive sea turtles heavily parasitized by O. branchiiatus and O. margini died several months after treatment with copper sulfate, but cause of death was not determined. They also applied 10% formalin directly to the leeches and their eggs, after which the turtles were left out of the water for 3 hours. This treatment, however, was not highly effective (Davies and Chapman 1974). At Sea Life Park in Hawaii, several topical treatments with isopropyl alcohol successfully eradicated O. margini in a massive outbreak on captive green turtles, loggerheads and hawksbills, Eretmocheilus imbricatus (Sea Life Park unpublished data, 1978).

As with any toxic chemical treatment for parasites, there is the possibility of undesirable, acute or chronic side effects to the host. Consequently, the use of a benign therapy would be preferable, if such a treatment were available. On 8 August 1987, a lethargic juvenile green turtle, afflicted with tumors and measuring 55 cm in carapace length, was found stranded at Kailua Beach on the Island of Oahu, Hawaii. Numerous O. branchiiatus were present on the turtle, especially on the ulcerated tumors protruding from the neck and eyes. Egg cases also were present in abundance. The turtle was subsequently held in a shaded seawater tank measuring 2.4 m in diameter and 1.2 m in depth. At the turtle continued to survive in this holding facility, where it was fed chopped fish and squid on a daily basis. Incidental observations made during routine tank cleaning over the following weeks revealed that the leeches seemed to be negatively affected by rinsing with fresh water from a hose. As a result, systematic treatments and observations were conducted. Treatment consisted of draining the turtle's tank completely and filling it with fresh water. Water treatment began on 23 September 1987. 120 leeches were attached to the turtle. The leeches reacted immediately to immersion in fresh water by rapidly crawling over the surface of the turtle. Within 30 minutes of soaking in fresh water, leeches began to fall off and were found dead on the tank bottom. After 50 minutes, 80 leeches remained on the turtle. The tank was then drained and refilled with seawater. The number of leeches on the turtle decreased progressively after the freshwater immersion.

On the following day, only 35 of the initial 120 leeches remained. Only four leeches remained after 4 days; no leeches were present on Day 6. Two weeks after treatment, leeches began to reappear, and the egg cases had changed from a dark to a light color. Close examination revealed that the lighter color represented newly hatched eggs. Consequently, it was concluded that the freshwater treatment had little or no effect on the egg cases and that additional treatments would be needed to completely rid the turtle of leeches as new ones hatched. Subsequent jenninings were conducted on this turtle and on a second one also found stranded with a heavy infestation of O. branchiiatus. Eventually, both turtles were completely free of leeches, and no negative effects were seen.

The relative scarcity of Ozobranchus on healthy green turtles in Hawaii suggests that some natural mechanism exists to deter or eliminate these parasites. Hawaiian green turtles commonly use tidal and seagrass foraging habitats, where freshwater discharges into the sea. Reduced salinities at these locations may aid in the control of Ozobranchus through hypotonic shock. According to Sawyer et al. (1975), both O. branchiiatus and O. margini occur exclusively in salinities over 30%. Another possibility in controlling leeches is that healthy turtles subject themselves to more frequent grooming by certain fishes at discrete underwater cleaning stations known to exist in Hawaii (Balazs 1980; Balazs et al. 1987). The special circumstance of adult green turtles sometimes basking ashore in Hawaii may also facilitate leech control through heating and desiccation (Whitlow and Balazs 1982).

Future research should examine different levels of salinity and duration of immersion needed to effect mortality in leeches on captive turtles. These data may then be used to help explain, or predict, the natural means of parasite control by sea turtles and may help to refine a practical nonchemical treatment against leeches in captive turtles.

LITERATURE CITED

Davies, R.W. and C.G. Chapman. 1974. First...

BARRY K. CHOI and GEORGE H. BALAZS
Southwest Fisheries Center
Honolulu Laboratory
National Marine Fisheries Service, NOAA
2570 Dale Street
Honolulu, HI 96822-2396, USA

BARRY K. CHOI
Biological Department
California State University
1250 Bedflower Blvd.
Long Beach, CA 90840, USA