Detecting Differences in Fish Diets

David A. Somerton
Honolulu Laboratory, Southwest Fishes Science Center
National Marine Fisheries Service, NOAA. 2570 Dole Street
Honolulu, Hawaii 96822-2396

Statistical comparison of the diet of a predator between areas or time-periods allows one to distinguish true dietary differences from sampling variability and may lead to a better understanding of a species' feeding habits. Despite the utility of statistical testing, few procedures appropriate for dietary comparisons have been developed. Perhaps one impediment to the development of a general approach to dietary comparisons is the wide variety of ways in which diets have been expressed and the lack of consensus about which is best. For example, diets expressed as the numeric or gravimetric proportions of the total food consumed will require different approaches to statistical comparison than those expressed either as the proportion of the samples containing each of the various prey types, or as the index of relative importance of each prey type (Pinkas et al. 1971).

For cases in which diets are expressed in terms of gravimetric proportions, Crow (1979) and Ellison (1979) have recommended statistical tests of between-sample differences based on multivariate analysis of variance (MANOVA). Validity of such tests, however, requires that the prey proportions have a multivariate normal distribution and that the covariance matrix of the proportions for individual fish be calculated directly and instead of T2 computed by using a technique known as randomization (Edgington 1987). Computation of the empirical probability distribution of the t-statistic (Morrison 1976). In matrix notation, this statistic is expressed as

\[T^2 = \frac{(x_1 - x_2)' S^{-1} (x_1 - x_2)}{\frac{1}{N_1} + \frac{1}{N_2}} \]

where \(S^{-1} \) is the inverse of the pooled estimate of the variance-covariance matrix (Morrison 1976). S. is approximated, assuming reasonably large sample sizes (≥50 stomachs with prey per sample), as

\[S = \frac{2(N_1 S_1 + N_2 S_2)}{N_1 + N_2} \]

where \(N_1 \) and \(N_2 \) are the sizes of the two samples.

Once a value of \(T^2 \) is computed, its significance is determined from an empirical probability distribution of \(T^2 \) computed by using a technique known as randomization (Edgington 1987). Computation of the empirical probability distribution using this technique proceeds as follows: (1) stomach content data from both time or area samples are summed across all individuals, and \(w_j \) is the total weight of all prey. Each \(p_j \) is transformed to \(x_j \), where \(x_j = \arcsin \sqrt{p_j} \), so that it conforms more closely to a normal random variable (Sokol and Rohlf 1969). Because \(x_j \) is estimated as a pooled proportion rather than the average of the proportions for individual fish, the variance of \(x_j \) and the covariance between \(x_1 \) and \(x_i \) cannot be calculated directly and instead are approximated by using the delta method (Seber 1973). In the following, \(x_i \) indicates the vector of \(x_j \) for sample i, and \(S_i \) indicates the matrix of variance and covariance estimates for \(x_i \).

The measure of statistical difference used is the Hotelling's T2 statistic, a multivariate extension of the t-statistic (Morrison 1976). In matrix notation, this statistic is expressed as

\[T^2 = \frac{(x_1 - x_2)' S^{-1} (x_1 - x_2)}{\frac{1}{N_1} + \frac{1}{N_2}} \]

\[S = \frac{2(N_1 S_1 + N_2 S_2)}{N_1 + N_2} \]

where \(N_1 \) and \(N_2 \) are the sizes of the two samples.

Once a value of \(T^2 \) is computed, its significance is determined from an empirical probability distribution of \(T^2 \) computed by using a technique known as randomization (Edgington 1987). Computation of the empirical probability distribution using this technique proceeds as follows: (1) stomach content data from both time or area samples are

Manuscript accepted 12 October 1990.

Materials and methods

Testing for between-sample differences is accomplished in three steps: (1) calculating for each sample the gravimetric dietary proportions and their variances and covariances, (2) calculating a measure of the statistical difference between samples, and (3) determining the statistical significance of the measure. The gravimetric proportion of the diet contributed by prey category \(j(p_j) \) can be estimated as the total weight of prey category \(j \) in all stomach samples divided by the total weight of all prey categories combined (Hyslop 1980). Algebraically this is expressed as

\[p_j = \frac{\sum_k w_{jk}}{\sum_j \sum_k w_{jk}} = \frac{w_j}{w} \]
combined, (2) the combined data are randomly sorted into two new samples equal in size to the originals, and (3) a value of T^2 is calculated for the two samples. Steps 2 and 3 are repeated iteratively (the present study uses 5000 iterations), and the probability distribution of the randomized values of T^2 is then calculated.

Next, the significance level of obtaining the original T^2 is estimated by determining the proportion of the randomized values of T^2 that, ignoring signs, is equal to or greater than the original.

If between-sample equality of the diet is rejected, it is then appropriate to test for the equality of individual prey categories to determine which categories contribute most to the difference in diet. In this case, the measure of statistical difference used is the univariate t-statistic. In matrix notation, the vector of t-statistics (Eq. 4) can be computed as

$$ t = D^{-1}(x - x_2),$$

where D^{-1} is the inverse of a matrix formed from the diagonal elements of S. As before, the significance of each t-statistic is determined from an empirical probability distribution computed for each prey category using randomization. Computation of these probability distributions is identical to that described for the multivariate case, except that a matrix of univariate t-statistics (Eq. 4) is used in the calculation instead of the T^2-statistic (Eq. 2). These individual tests are a posteriori tests and require some adjustment of the error rate considered to be significant. Using the Bonferroni inequality (Morrison 1976, Miller 1981), an appropriate adjustment is to assume significance at $\alpha \cdot n^{-1}$.

The above procedures have been incorporated into the computer program DIETTEST, which is designed to run on IBM-compatible microcomputers. This program is available from the author.

As an example of the application of this method, it has been used to test for dietary differences between two samples of pelagic armoredhead: 55 fish collected in June 1985, and 101 fish collected in August 1988 (only fish with prey in their stomachs were used in the analysis). Both samples were obtained from the Southeast Hancock Seamount (lat. 30°N, long. 180°W) on the Hawaiian Ridge. Stomach contents were sorted to the lowest taxonomic category possible, then blotted and weighed to the nearest milligram. To simplify the analysis, various prey items were pooled into four major prey categories: tunicates, crustaceans, fish, and "others."

Results and Discussion

When the method was applied to the two armorhead samples, the test of the simultaneous equality of all dietary proportions between samples was highly significant ($P<0.001$), indicating that the diet of pelagic armoredhead had changed between the two sampling periods. Because of this, tests were also made for individual prey categories. Two of the four prey categories, tunicates and crustaceans, differed significantly between samples (Table 1) and therefore appeared to be responsible for the overall difference in diet.

The measure of between-sample difference, T^2, employed in the proposed test was selected primarily because the absolute differences between samples are scaled by the within-sample variances, a particularly desirable feature when dealing with highly variable quantities such as fish diets. This choice, however, imposes a constraint on the proposed statistical test; that is, the method can only be applied to cases in which the two diet samples lack mutually exclusive components. This constraint arises because computation of T^2 requires inversion of the variance-covariance matrix (Eq. 2) which is singular and therefore not invertible when a prey category is completely absent from one of the samples. Although this constraint may not be severe when the diet of a single predator is being examined for spatial or temporal variation, especially if one is willing to accept the pooling of prey to relatively high taxa, the proposed method is likely to be of limited value for comparing the diets of different predators. For such between-predator comparisons, a more appropriate test could be developed by utilizing some measure of dietary overlap (Caillet and Barry 1979) which is not affected by mutually exclusive prey categories, instead of T^2 as a measure of between-sample difference.

Acknowledgments

I thank George Boehlert, Tim Gerrodette, John Hoenig, Russell Kappenman, Jeff Polovina, and two anonymous
referees for reviewing the manuscript and offering helpful suggestions. In addition, I thank Donald Kobayashi for his programming assistance and Mike Seki for initially posing the problem.

Citations

Caillet, G.M., and J.P. Barry

Crow, M.E.

Edgington, E.S.

Ellison, J.P.

Hyslop, E.J.

Miller, R.G. Jr.

Morrison, D.F.

Pinkas, L., M.S. Oliphant, and I.L.K. Iverson

Seber, G.A.F.

Sokal, R.R., and F.J. Rohlf