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Abstract 
 

To better interpret whether genetic data from bowhead whales could have resulted from a 
single stock, we created an individual-based model of bowhead whale population dynamics and 
genetics using the R package rmetasim.  The model re-created as closely as possible all aspects of the 
demography, genetics, and whaling history of bowheads.  Simulated datasets were generated by 
sampling from the simulated population in a way that matched the age, sex, and geographic 
distribution of the empirical samples.  These simulated datasets were used to generate null 
distributions for a variety of genetic analyses, against which we compared the empirical bowhead 
dataset.  In most respects, the results of our analysis indicate that the empirical genetic data sampled 
from BCB bowhead whales are consistent with our model of a single, randomly-mating population.  
Of the 55 spatial, temporal, and cohort comparisons we examined (11 stratifications for 5 measures of 
genetic differentiation), only the mitochondrial FST between fall and spring St. Lawrence Island, and 
the microsatellite FST between Barrow and St. Lawrence Island exhibited a significant difference 
between the simulated and empirical datasets.  Our results show that the empirical STRUCTURE 
analyses are entirely consistent with a single population that is out of genetic equilibrium due to the 
effects of commercial whaling. 
 
 
Introduction 
 

Analyses of bowhead whale genetic data present unique difficulties in interpretation.  Bowhead 
whales were greatly reduced in number very rapidly and recovered (Brandon and Wade 2007) in only 
two and a half generations (Taylor et al. 2006), guaranteeing the population or populations to be 
strongly out of genetic equilibrium.  Sampling is also not random, with some villages preferring to kill 
large (and hence older) whales, while others prefer smaller (younger) whales (Suydam et al. 2004).  
Further, kills primarily occur during migration and often in short time periods, and whales are known 
to segregate by size and reproductive condition during migration (Angliss et al. 1995). 
In this paper, we describe an individual-based simulation that attempts to capture both the population 
dynamics that lead to non-equilibrial genetic compositions and match the non-random empirical 
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samples as closely as possible with respect to birth year and sex. Our aim is to interpret the results 
from standard genetic statistics and analyses by generating null distributions based on a single 
randomly mating population that does not assume equilibrium conditions.  These analyses range from 
simple metrics, like whether markers are in Hardy-Weinberg equilibrium, and measures of population 
subdivision (Fst,  χ2, and Φst), to more complex methods like STRUCTURE (Pritchard et al. 2000, 
Falush et al. 2003). 
 
 
Methods 
 

The simulation is based on the rmetasim package (version 1.1.008 - Strand 2002), run in the R 
statistical environment (version 2.4.1 - R Development Core Team 2006).  Rmetasim is a library of 
functions which performs individual-based population genetic simulations.  Each individual has a 
multi-locus genotype and a mitochondrial DNA (mtDNA) haplotype.  Individuals are structured 
demographically with a stage-based matrix population model (see ‘Demography’ section below; 
Caswell 2001).  At each time step individuals are randomly assigned their births, stage transitions, and 
deaths according to the rates specified in the matrix model (used as distributions to incorporate 
demographic stochasticity).  Offspring genotypes are determined by parental genotypes assuming 
random mating, independently segregating alleles, and neutrality of markers.  For all parameters not 
explicitly defined here we use the program default values.   
 
Demography 
 

Rmetasim version 1.1.008 incorporates density dependent population growth, as described in 
Martien et al. (2006).  Density dependence is implemented by interpolating between matrices that 
represent survival and reproduction rates at carrying capacity and near zero population density.  
Although this version of rmetasim only allows for linear interpolation between these matrices, we 
have modified the program to allow for non-linear density dependence.  The value of a given element 
of the life history matrix in year t is given by: 
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where: 
xt is the value of the element in year t 
x0 is the value of the element at carrying capacity 
xmax is the maximum value of the element (near zero population size) 
Nt is the size of the population at the start of year t 
K is the carrying capacity of the population 
z is the shape parameter. 
 

The demographic matrices used for this study are for a stage-based model with the following 7 
stages: 5 juvenile stages (J1-J5), adult females (F), adult males (M) (Ripley et al. 2006).  Stage 
transition probabilities were calculated using the fixed stage duration method (Caswell 2001).  The life 
history parameter estimates presented in Brandon and Wade (2007) were used to develop two 
matrices, one for which λ = 1.00, the other for which λ = 1.042 (Table 1).  These matrices were used 
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to represent vital rates at carrying capacity and near zero population size, respectively.  We set z to 4, 
which is the posterior median from Brandon and Wade’s (2007) backward projection model (referred 
to as ‘1848DD’ in their paper). 
 
Genetic initialization and burn-in 
 

We initialized the simulated populations using mitochondrial haplotype and microsatellite 
allele frequency distributions generated by the coalescent program SIMCOAL v2.1.2 (Laval and 
Excoffier 2004).  Initializing from a coalescent rather than with random allele and haplotype 
frequencies greatly reduced the number of generations required for the simulations to reach 
equilibrium.  In order to initialize SIMCOAL, we estimated the average effective population size (Ne) 
at carrying-capacity as, 
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where: 
 H0 = initial heterozygosity 
 Ht = heterozygosity at time t 
 t = elapsed time in years 
 g = generation time (= 37 years) 
 m = multiplier chosen to start the simulation burn-in phase close to equilibrium (= 1.45) 
 
Ne was estimated for mtDNA and microsatellites separately.  For microsatellites, the above equation 
actually estimates 2Ne, which is the value required by SIMCOAL.  We calculated the average effective 
population size ( eN ) as the harmonic mean of Ne from 20 population projections lasting 4000 years 
(t), each initialized with the same survival and reproduction matrices as in the full simulation.  The 
sample size generated by SIMCOAL was eN  for the mtDNA sequences and the smaller of eN  and 
1000 for the microsatellite loci.  The mtDNA sequence was specified to be 397 bp, with a Ts:Tv of 
10:1, and a mutation rate of 9.4 x 10-3.  For the microsatellites, two groups of loci were simulated 
representing the 11 “original” and 22 “new” loci used in Givens et al. (2007).  Average mutation rates 
were set at 3.0 x 10-4 and 1.5 x 10-3 for the original and new loci respectively.  Mutation parameters 
were tuned to produce diversity comparable to that observed as has been done previously (Taylor et al. 
2000). 

In order to ensure that the simulated populations were in equilibrium, a burn-in phase was 
conducted following initialization.  Previous examinations of the trajectories of the number of mtDNA 
haplotypes, microsatellite alleles, and heterozygosity in both markers indicated that 4000 years was a 
sufficient amount of time to ensure that these values were relatively stable (Figure 1).  A sample of all 
markers was independently generated from SIMCOAL for each burn-in replicate. 
 
Simulated whaling and sampling 
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For each burn-in replicate, multiple replicates of an annual removal of whales designed to 
mimic the historical kill were conducted.  The historical kill encompasses the commercial harvest and 
Russian and Alaskan subsistence catches from 1848 to 2006.  The harvest data used in the model are 
the same data being used in the AWMP (George and Zeh, pers. comm.).  In each year of a whaling 
replication, the first whales removed from the simulated populations are those for which biological 
samples and measurements were collected from the Alaskan subsistence catch (available from 1974 to 
2006), followed by a random removal of the remainder of the recorded catch.  Age and gender were 
independently estimated as described below for each harvested whale in each simulation replicate in 
order to account for error in the aging techniques and variance in sampling. 

If the gender of the sampled whale was unknown, then it was randomly selected using the ratio 
of known-gender whales killed in that year.  A 50:50 ratio was assumed if no known-gender whales 
were available in a particular year (empirical data for all whales from 1974-2006 for which sex was 
identified = 487(F):468 (M), very close to parity).  In order to match harvested whales to simulated 
individuals, the age of each harvested whale was determined in a hierarchical fashion based on the 
quality of data available.  For whales that were aged and had estimates of standard errors from one of 
the methods given in Lubetkin and Zeh 2007, ages were randomly sampled from a normal distribution 
and rounded to the nearest whole age.   

For whales that were not aged, a Classification and Regression Tree (CART – Breiman et al.  
1984), as implemented in the R package rpart v3.1-34 (Therneau and Atkinson 2006), was used to 
estimate the age bin to which they belonged based on morphological characteristics (gender, body 
length, baleen length, anterior flipper length, peduncle girth, and length of the peduncle white patch).  
The CART tree was created from 177 known-aged samples using ten age bins (Figure 2), which were 
selected from an exploratory series of CART regression trees.  Bins were selected probabilistically 
based on the distribution of bin membership from the training data in the node to which an unknown 
sample was assigned (Table 2).  The age for each sample was then chosen at random from all 
individuals in the simulated population within the chosen age bin.  If the morphometric data necessary 
to classify a sample at a particular split in the CART tree was missing, surrogate variables were used if 
available.  If there was insufficient morphometric data for the CART algorithm, then an age was 
chosen at random from the simulated population.  In all cases, the age distribution being chosen from 
was that of the simulated population immediately following burn-in, which was considered a stable 
age distribution. 

For each sampled whale in the empirical dataset, an individual of the same age and gender was 
randomly selected from the simulated population.  If no individuals in the simulated population were 
found to match exactly, all individuals within a progressively increasing age window around the whale 
under consideration were examined.  A match was selected from within the first age window which 
contained at least one individual of the same gender as the whale under consideration, with 
probabilities assigned to each individual based on their gender and the size of the window.  The 
probability of choosing an individual of the same sex as the sample under consideration ranged from 
one for an age window of zero (all simulated individuals were of the same age as the sampled whale) 
to 0.5 when all individuals in the population were considered.  The probability of choosing an 
individual of the opposite sex was one minus this value.  In this manner, all sampled whales were 
matched to a unique simulated individual.   

Following the removal of any biologically sampled whales, the un-sampled portion of the 
harvest was then removed from the simulated populations.  In all cases, whaling was restricted to 
individuals older than one year.  The genetic data of the simulated whales selected to be killed each 
year were saved if genetic data were available for their matched harvested counterparts.  If biopsies 
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were collected in a given year, the genetic data of an equivalent number of randomly selected 
simulated individuals still alive in the population were also saved.  Following a simulated year of 
whaling and sampling, the populations were then projected forward one year and the whaling for the 
next year would occur again as described above.   

In order to ensure that the abundance trajectories from the simulations were similar to those of 
historical trend analyses (Brandon and Wade 2007), two abundance “gates” were established that 
replicates had to pass through.  Replicates that had trajectories outside of the 99% confidence intervals 
of the first and last years of estimated population abundance (1978 and 2001), including those that 
went extinct, were discarded.  For each of 50 burn-in replicates, the first ten successful whaling 
replicates were saved producing a total of 500 replicates.  The final output was a simulated genetic 
sample representing the demographic composition of the empirical harvest sample and all individuals 
surviving in each of the simulated populations.  Annual population abundances were saved for 
comparison with trajectories from historical trend analyses (Brandon and Wade 2007). 

 
Introduction of errors 
 

Microsatellite datasets inevitably contain genotyping errors.  Error rates reported in the 
literature range from 0.1% to 48% (Morin et al., 2007).  To examine the effect of genotyping errors on 
the analytical methods applied to the bowhead dataset, we introduced genotyping errors into our 
simulated dataset.  By comparing genotypes for duplicate samples included in the original empirical 
dataset, Morin et al. (2007) estimated an overall error rate of 0.01 for the bowhead microsatellite data.  
Of these, 40% were apparent cases of allelic dropout, i.e., the individuals were scored as homozygotes 
in one genotyping attempt and as heterozygotes in another.   

The number of genotyping errors introduced into a simulated dataset was determined by 
drawing a random deviate from a binomial distribution given the overall error rate (0.01) and the 
number of alleles in the dataset (18,314).  The alleles to which the errors were applied were chosen at 
random from the entire dataset.  When an error occurred, it had a 0.4 probability of being an instance 
of allelic dropout, in which case the allele in question was set equal to the other allele the individual 
possessed at that locus, making the individual homozygous at that locus.  Otherwise, the allele was 
replaced by a different allele chosen at random from the allele frequency distribution for the 
appropriate locus. 
 
Standard genetic analyses 
 

We used a suite of standard population genetic algorithms to analyze both the genetic samples 
from the simulations as well as the matching empirical genetic data.  Genepop v3.3 (Raymond and 
Rousset 1995) was used to run the Hardy-Weinberg test of heterozygote deficiency on the 213 
samples from Barrow using both the 11 “original” and 22 “new” loci.  For this test, an MCMC burn-in 
of 30,000 iterations was used, with a final chain length of 10,000 and batch size of 100.  We also 
calculated Hardy-Weinberg disequilibrium across all loci using Fisher’s method (Ryman and Jorde 
2001). 

The Fst for mtDNA and microsatellites was calculated following Weir and Cockerham (1984), 
and χ2 for both sets of markers was calculated following Roff and Bentzen (1989).  The AMOVA Φst 
metric was calculated for mtDNA data using the R package ade4 (Chessel et al. 2004).  Temporal, 
spatial, and age cohort stratifications of samples for Fst, χ2, and Φst are the same as those given in 
LeDuc et al (2007).  Unless otherwise noted, p-values reported in this paper are the proportion of 
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replicates with test-statistics ≥ the value obtained from the empirical data using the same (matched) 
samples.  Comparisons with p-values ≤ 0.05 were considered to indicate empirical results inconsistent 
with our model. 

 
STRUCTURE analyses 
 

We used the Bayesian clustering program STRUCTURE v. 2.1 (Pritchard et al. 2000; Falush et 
al. 2002) to analyze the simulated datasets.  STRUCTURE clusters samples into groups so as to 
minimize the amount of Hardy-Weinberg disequilibrium within the groups.  Each sample is assigned 
probabilistically to a group.  The number of groups (k) is determined by the user.  By comparing the 
probability of the groupings defined for different values of k (Pr(X|K)), STRUCTURE can be used to 
gain insight into the number of populations present in the sample set.   

Analyses of the empirical dataset (Givens et al. 2007) have suggested that the model that fits 
the data best is one with three groups – the Russian samples make up one group, while the Canadian 
and BCB samples are split approximately evenly between the last two groups.  There is no clear 
geographic or temporal concordance within the two Canadian/BCB groups, though there is some 
suggestion of temporal pulsing of the two groups within the samples collected in Barrow in the fall, 
and a significant linear trend in stock membership at Barrow in the spring (Givens et al. 2007). 

To determine whether the patterns seen in the empirical dataset are consistent with a single 
stock, we used STRUCTURE to group the empirical dataset and each of the simulated datasets into 
two groups (k=2).  It was necessary to re-analyze the empirical dataset because Givens et al.’s (2007) 
analyses included data from Russia and Canada, which were not included in our simulations.  All of 
our analyses were based on microsatellite data only, using all 33 microsatellite loci and only those 
samples included in the 33 locus microsatellite reference dataset.  In contrast, Givens et al. use only 
the 22 new loci and the corresponding reference sample set.  Our STRUCTURE analyses all used an 
admixture model with correlated frequencies, as was done by Givens et al.  Given the low level of 
genetic differentiation expected between separate BCB stocks should they exist, this model is the most 
appropriate. 

We determined the appropriate chain length for our STRUCTURE analyses by analyzing the 
same simulated dataset ten times for a given chain length.  We calculated the variance across the ten 
analyses in the assignment probability for each individual, and then averaged the variance across 
individuals.  We repeated this procedure for a variety of chain lengths to determine the best trade-off 
between runtime and the precision of the assignment probabilities. Unless indicated otherwise, all 
analyses on assignment probabilities were conducted on the logit-transform of these values. 

We compared the results obtained for the simulated datasets to those from the empirical dataset 
using a variety of summary statistics.  For each STRUCTURE analysis, we calculated the variance in 
the assignment probability across individuals.  In cases where many individuals assigned strongly to 
one population or the other, this variance will be much higher than in those cases where most 
individuals had a roughly equal probability of coming each population.  We also calculated Fst 
between the two groups defined by STRUCTURE.  For this calculation, each sample was assigned to 
the group for which it had the highest assignment probability. 

Givens et al. (2007) found evidence of temporal pulsing in their analyses of the empirical data 
– the animals passing by Barrow in the fall seemed to assign predominantly to one group during the 
beginning and end of the migration, and predominantly to the other group during the middle of the 
migration.  We used two measures to quantify ‘pulsiness’ in our STRUCTURE analyses.  We first fit a 
three-phase step function to a plot of the day of the year a whale (simulated or real) was harvested 
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versus its assignment probability to group 1.  For the step function, we did not perform a logit-
transformation of assignment probability.  We applied two constraints to the step function: 1) each 
phase of the function was at least five days long and 2) the sign of the change in the value of the 
function was opposite for the first and second steps.  This second constraint ensured that the step 
function reflected a ‘bump’ or ‘dip’ in assignment probabilities rather than a monotonic increase or 
decrease.  We compared the step function to a horizontal line equal to the mean assignment probability 
for all fall Barrow whales.  We kept track of the deviance of the step function from the horizontal line 
(calculated as the area between the two functions), the mean assignment probability for each phase of 
the step function, and the days on which the steps occurred.   

The step-function allowed us to examine the simulated datasets for the specific temporal 
pattern observed in the empirical dataset, namely, ‘pulses’ of one group early and late in the fall 
migration, and a ‘pulse’ of the other group in the middle.  In order to quantify more general pulsing 
patterns in both the simulated and empirical datasets, we calculated a nearest neighbor correlation 
coefficient.  To do this, we calculated the average assignment probability to group 1 for all whales 
harvested on a given day of the year, again restricting our analysis to animals harvested in Barrow in 
the fall.  We used the R package spatstat (Baddeley and Turner, 2005) to calculate the nearest 
neighbor correlation in the assignment probability between days.  Positive nearest neighbor 
correlations indicate that the assignment probability on a given day is more similar that of the days 
immediately preceding and following it than it is to a randomly chosen day. 

Givens et al. (2007) also found a statistical significant trend in assignment probability for 
individuals harvested at Barrow in the spring.  To test for such a trend in the simulated datasets, we 
calculated the linear regression coefficient for assignment probability regressed on day of year for all 
spring Barrow whales. 
 
 
Results 
 
Simulation diagnostics 
 

The population trajectories for the 500 replicates are given in Figure 3.  At the nadir, the 
median abundance was 1197 with a range of 806 – 1608.  4% of the replicates ended with an 
abundance greater than 12,000 in 2006.  Figure 4 shows the distribution of ages within each stage at 
the end of burn-in (A) and at the end of the simulation (B).  The mean age of all reproductive 
individuals was 48 (95-percentile = 13 – 129) at the end of burn-in and 33 (95-percentile = 12 – 76) at 
the end of the simulation.  At the end of the simulation, approximately 48% of the individuals were 
reproductive adults and the sex ratio was not significantly different from 50:50. 

 Genetic diversity of the empirical data, as measured by the number of alleles (haplotypes for 
mtDNA), heterozygosity, and θH, was similar to the distributions of these metrics from the matched 
simulated samples (Figure 5).  Only measures of heterozygosity and θH for mtDNA were outside of 
the simulated distributions, a result of the skewed haplotypic frequency distribution in the empirical 
data. 
 
Standard genetic analyses 
 

In the empirical data, nine of the 33 loci were found to be out of Hardy-Weinberg equilibrium 
(HWE) with a combined p-value using Fisher’s method of 2.3 x 10-6.  In the simulation, the median 
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number of loci out of HWE was two, with a maximum of five (Figure 6A).  When errors were added 
to the simulated data, the median number out of HWE increased to 3 with a maximum of 11 (Figure 
6B).  The p-value for the test with errors was 0.006.   

There was a relatively uniform distribution of MCMC HWE p-values across loci without errors 
included (Figure 7A).  The combined p-value using Fisher’s method for the empirical data was 2.3 x 
10-6, which was less than the minimum value in the simulation of 0.0025.  The 95-percentile of the 
simulated distribution was 0.022 – 0.989.  When errors were introduced into the simulated data, the 
distributions of the MCMC HWE p-values and the Fisher’s method p-values were highly skewed 
(Figure 7B).  The median of Fisher’s method p-values was 2.5 x 10-2, with a 95-percentile of 3.14 x 
10-5 – 5.1 x 10-1.  61% of this distribution was ≤ 0.05.  The empirical value was at the lower 1% of this 
distribution, making it inconsistent with the model. 

In the analyses of empirical mtDNA data, the only comparisons found to be significant with 
standard permutation tests were the three χ2-tests of cohorts born before 1949 and those born after 
1979 (Table 3A).  However when compared to the simulated data, these stratifications were found to 
be consistent with our model (simulation p-values > 0.15).  The only stratification of the mtDNA data 
found to be inconsistent with our model was the comparison between fall and spring samples from St. 
Lawrence Island (p = 0.008).  All other temporal, spatial, and cohort stratifications had simulation p-
values > 0.15, indicating that they were consistent with our model. 

Givens et al. 2007 found significant differentiation in the microsatellite data between samples 
from Barrow and SLI using a Fisher’s exact test.  Using standard permutation tests, none of the 
comparisons we examined were significant, although the Barrow v. SLI comparison had the lowest 
permutation p-value for both Fst and χ2 tests (Table 3B).  The Barrow v. SLI comparison was also the 
only stratification of the microsatellite data that was inconsistent with our model with a simulation p-
value of 0.04.  All other stratifications had simulation p-values > 0.09. 

The introduction of errors into the simulated microsatellite data did not make a substantial 
change in the results of any of the Fst or χ2-tests.  While the p-value of some results changed slightly, 
there was not a consistent pattern in the direction of the change. 
 
STRUCTURE  
 

The variance between runs in assignment probability decreased rapidly as the run length was 
increased from 50,000 iterations to 200,000 iterations, and then remained relatively stable for run 
lengths up to 1,000,000 iterations (Figure 8).  We therefore ran all of our analyses for 200,000 
iterations, following a burn-in of 30,000 iterations. 

The results of our STRUCTURE analyses of the empirical dataset were similar to those 
reported by Givens et al. (2007) despite the fact that we included all 33 microsatellite loci in our 
analyses and did not include samples from Canada or the Sea of Okhotsk (Figure 9).  A smoothed fit 
of day-of-year versus group 1 assignment probability for fall Barrow samples shows a ‘pulse’ of group 
1 ancestry between days 270 and 280, though the effect is not as pronounced as in Givens et al.’s 
analysis (Figure 10).  We did find a significant trend in group 1 ancestry over the course of the spring 
migration at Barrow (Figure 11).  However, unlike in Givens et al.’s analysis, this trend was not 
statistically significant (p = 0.111). 

The results of the STRUCTURE analysis of the empirical dataset were consistent with those 
from the simulated datasets for all measures we examine (Table 4).  The p-values for the various 
comparisons ranged from 0.112 to 0.402 without genotyping errors added to the simulated datasets, 
and from 0.126 to 0.462 with errors added.  
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Discussion 
 
Consistency of empirical results with simulation 
 

In most respects, the results of our analysis indicate that the empirical genetic data sampled 
from BCB bowhead whale are consistent with our model of a single, randomly-mating population that 
mimics their history of whaling and subsequent recovery.  Of the 55 spatial, temporal, and cohort 
comparisons we examined (11 stratifications for 5 measures of genetic differentiation), only two, the 
mitochondrial FST between fall and spring St. Lawrence Island, and the microsatellite FST between 
Barrow and St. Lawrence Island, exhibited a significant difference between the simulated and 
empirical datasets.  The results of the STRUCTURE analyses of the empirical dataset have had the 
greatest influence on the construction of stock structure hypotheses in the bowhead special assessment.  
However, our results show that the empirical STRUCTURE analyses are entirely consistent with a 
single population that is out of genetic equilibrium due to the effects of commercial whaling. 

There were three analyses that suggest the empirical data are not consistent with our model.  
First, the number of loci out of HWE in the empirical data from the Barrow samples is significantly 
greater than in the simulated data.  When errors were introduced in the simulated data, the difference 
between the two decreased dramatically but remained significant.  This was the only analysis for 
which the introduction of genotyping errors into the simulated datasets had a substantial impact on the 
results.  While the comparison between the empirical and simulated results was still significant even 
with errors introduced, our results highlight the sensitivity of HWE to genotyping errors.  For instance, 
in the simulation without genotyping errors only 0.026 of the simulated datasets had 5 or more loci out 
of HWE.  When genotyping errors were introduced, this probability jumped to 0.298. 

The introduction of errors showed a greater effect on the distribution of the overall Fisher’s 
method p-value for HWE.  Without errors, this distribution was relatively uniform as would be 
expected under a standard null hypothesis.  When errors were included, the distribution became highly 
skewed towards very small p-values.  While this skew was not large enough to make the empirical 
finding of overall Hardy-Weinberg disequilibrium consistent with our model, the implication is that 
with even the relatively low error rate identified by Morin et al. (2007), there is a large probability 
(61% of the replicates had a p ≤ 0.05) of falsely assessing widespread disequilibrium.  

We used a very simplistic model for introducing genotyping errors to the simulated datasets.  
Though we did incorporate the observed allelic dropout rate, all errors were random with respect to the 
loci at which they occurred and the alleles and individuals that were affected.  In reality, genotyping 
errors are often not random.  Some loci may be more susceptible to errors than others, as are some 
samples.   Allele length and frequency may also affect the likelihood of the allele being correctly 
scored.  Stutter bands and slippage would result in the mis-scored allele being very close in length to 
the correct allele, rather than reflecting the overall allele frequency at the locus.  Since we are unable 
quantify the various biases inherent in genotyping errors, we chose a simplistic model that only 
included allelic dropout and random errors.  If we had incorporated other realistic biases into our 
simulated genotyping errors, we would likely have seen an even stronger impact on the expected 
distribution of the number of loci out of HWE. 

The second analysis that indicated a lack of consistency between the empirical and simulated 
datasets was the FST test between fall and spring St. Lawrence Island for mitochondrial sequences.  
The magnitude of the observed mtDNA FST value (0.054) in this test results from the difference in the 
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frequency of one haplotype (BH42) between spring and fall samples (6 in fall, 1 in spring).  Givens et 
al. (2007) report a potential difference between seasons in the SLI samples in the microsatellite data.  
Because they do not see a difference between spring Savoonga (one of two villages in SLI) and 
Barrow, but significant difference between fall Savoonga and both spring and fall Barrow, the 
implication is that the fall Savoonga samples are outliers.  Indeed, five of the six fall samples that 
possessed haplotype BH42 came from Savoonga.  It should be noted that the sample sizes are 
relatively small in both fall and spring strata and therefore may not adequately represent the haplotypic 
distributions of the whales near these villages in these seasons. 

The final analysis that was inconsistent with our model was the FST test between Barrow and 
St. Lawrence Island (SLI) for the microsatellite markers.  It is possible that this result is being 
influenced either by the unusual distribution of the fall Savoonga samples mentioned above or by the 
loci that were found to be out of HWE in the Barrow samples.  We partially examined the effect of the 
latter by running this analysis again after removing the six samples most influential on HWE, which 
were identified by Morin et al. (2007).  The removal of these samples did not significantly change the 
lack of consistency between the empirical and simulated data either with or without errors introduced 
into the simulated data. 

 
Simulation construction 
 

Rather than the null hypothesis used in standard genetic analyses of a panmictic population at 
equilibrium, the simulation presented in this paper represents a null hypothesis based on a very 
specific model of a single population that is out of equilibrium due to its population history.  One of 
the strengths of this simulation is that by matching the age and sex characteristics of the empirical 
samples where possible, this null hypothesis inherently incorporates any potential demographic biases 
in the sampling process.  

Our model relies on several parameters controlling the population dynamics and genetic 
diversity.  Where possible, we have used empirical data and parameter values from independent 
sources.  If these were not available, parameters were iteratively tuned to ensure that other aspects of 
simulation either fit published results or matched the empirical data as closely as possible.  It is 
important to note that this process does not ensure that our parameter values are accurate with respect 
to a “true” single population, as actual stock structure and biological/demographic parameters remain 
unresolved at this time. 

An example is the procedure by which carrying capacity (K) was selected.  With the value of 
the logistic growth shape parameter (z) set at the median posterior value from Brandon and Wade’s 
(2007) backward projection model, we selected a value of K such that a majority of the replicates did 
not go extinct and passed through the abundance “gates”.  Under these constraints it can be seen that 
many of the population dynamics parameters, most notably K, z, and the population growth rate (r – 
not specified in the model, but resulting from the reproduction and survival matrices), will be closely 
correlated such that multiple combinations would work.  While our goal was not to estimate these 
parameters, through iterative testing we determined that, given the historical catch record, there was a 
small range over which they could vary and still meet the extinction and abundance constraints.  In our 
tests, choices of K outside of the range of approximately 11,900 - 12,400 would not produce useable 
replicates.  This range is well within the 95% credibility interval for K (9,112 – 13,610) from the 
Brandon and Wade (2007) assessment model most similar to our simulation, which is expected given 
that this study used the same historical catch and abundance data.  
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This simulation makes the assumption that the carrying capacity of the population now is the 
same as it was prior to the onset of commercial whaling.  This could be violated if there has been a 
substantial change in the ecosystem or the range of the population has either expanded or contracted.  
The 2001 abundance estimate of 10,545 suggests that the population is very close to the carrying 
capacity estimated in Brandon and Wade, making it unlikely that there has been a decrease in carrying 
capacity.  Whether or not there has been a significant increase in carrying capacity will require future 
surveys. 

A second result of the model constraints is that we were unable to directly control population 
abundance at the nadir or the range over which it varied.  Because a population reduced to a very small 
size will be unable to contain the entire genetic diversity of its larger progenitor, this factor is likely to 
greatly affect the degree of genetic disequilibrium within the population.  The smaller the nadir, the 
stronger the signal of a generational gene-shift (Ripley et al. 2006) is expected to be, in which the 
genotypes of individuals born before and after the nadir will appear to have come from two different 
distributions.  Therefore, it is important to note that the results of study are conditional on the nadir 
being approximately 1100. 

Strong GGS can also arise if the commercial kill was selective with respect to sex or age.  
Though there is no evidence that whalers were intentionally selective in their hunting, the fact that 
bowheads segregate by age and sex during migration may have resulted in selectivity on the basis of 
availability (Bockstoce, 1986).  Evidence for some selectivity can be found in the in the fact that the 
average size of whales killed decreased between the beginning of the fishery and 1874, the only period 
for which such data are available (Bockstoce and Burns, 1993).  If a similar kind of selectivity 
continued throughout the commercial hunt, the portion of the population that survived through the 
nadir would tend to represent younger cohorts.  This would have the effect of temporarily increasing 
the rate of genetic drift leading to significantly different genotypic distributions.  Sensitivity of the 
results to selectivity of the harvest, as well as a range of carrying capacities, size of the nadir, and non-
random mating are examined in further detail using a simpler form of the simulation previously 
described by Ripley et al. (2006) and presented in Martien et al. (2007). 

While this particular simulation models a single stock, a two-stock version would be similar in 
structure, but would require several important additions.  In addition to all the complexities of the 
population dynamics where the stock identity of the historical catch is unknown, genetic simulations 
require establishing the pre-whaling genetic conditions.  These initial conditions result from the 
relative abundances and degree of gene-flow between the two populations.  To assess whether 
simulated cases matched the empirical cases, empirical samples and their simulated equivalents would 
need to be assigned to stock, introducing further uncertainty.  
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Table 1. Demographic parameters at carrying capacity (λ=1.00) and near zero population size 
(λ=1.042).  For each stage, stage duration (T) and age-specific survival (σ) are used to calculate the 
matrix model parameters P (survival in stage) and G (stage transition probability) according the fixed 
stage duration model (Caswell 2001; Ripley et al. 2006). 
 
  

 λ = 1.00 λ = 1.042 
Stage T σ γ P G T σ γ P G 

J 1 4 0.800 0.173 0.661 0.139 2 0.925 0.470 0.490 0.435
J 2 4 0.978 0.242 0.741 0.236 3 0.985 0.315 0.675 0.310
J 3 4 0.978 0.242 0.741 0.236 3 0.985 0.315 0.675 0.310
J 4 4 0.978 0.242 0.741 0.236 3 0.985 0.315 0.675 0.310
J 5 4 0.978 0.242 0.741 0.118 3 0.985 0.315 0.675 0.155
F 50 0.978 0.011 0.967 0.011 50 0.985 0.004 0.981 0.004
M 50 0.978 0.011 0.967 0.011 50 0.985 0.004 0.981 0.004
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Table 2.  Probability of assignment to age bins for leaves of the CART tree in Figure 2.  Bins are 
inclusive of the lower boundary. 
 
 Age Bin 

Leaf < 3 3 - 5 5 - 10 10 - 18 18 - 26 26 - 37 37 - 50 50 - 60 60 - 90 ≥ 90 
I 0.84 0.11 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
II 0.00 0.86 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
III 0.21 0.21 0.36 0.21 0.00 0.00 0.00 0.00 0.00 0.00 
IV 0.00 0.06 0.88 0.00 0.00 0.00 0.06 0.00 0.00 0.00 
V 0.00 0.00 0.36 0.57 0.00 0.00 0.07 0.00 0.00 0.00 
VI 0.00 0.00 0.33 0.00 0.50 0.17 0.00 0.00 0.00 0.00 
VII 0.00 0.00 0.00 0.33 0.17 0.50 0.00 0.00 0.00 0.00 
VIII 0.00 0.00 0.00 0.13 0.53 0.27 0.00 0.00 0.07 0.00 
IX 0.00 0.00 0.00 0.00 0.00 0.53 0.29 0.18 0.00 0.00 
X 0.00 0.00 0.00 0.00 0.00 0.14 0.43 0.29 0.00 0.14 
XI 0.00 0.00 0.00 0.11 0.00 0.00 0.22 0.11 0.22 0.33 
XII 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.11 0.67 0.00 
XIII 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.17 0.17 0.50 
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Table 3.  Results of comparisons of observed Fst, χ2, and Φst values with distributions from 500 
replicates of the simulation.  Permutation p-values are from 1000 permutations.  Simulation p-values 
are proportion of replicates with test statistics ≥ than empirical.  Shaded boxes indicate p-values ≤ 
0.05. The comparisons where the empirical are inconsistent with the simulated are the shaded boxes in 
the columns for “simulation p-value”. 
 

A) mtDNA 

 Fst χ2 Φst 

Strata observed 
permutation

p-value 
simulation 

p-value 
permutation

p-value 
simulation 

p-value observed 
permutation

p-value 
simulation

p-value 
Barrow (258) v SLI (52) -0.002 0.697 0.772 0.774 0.802 -0.003 0.584 0.486 

Barrow-F (133) v Barrow-S (125) 0.000 0.344 0.406 0.562 0.586 0.002 0.219 0.230 

SLI-F (13) v SLI-S (11) 0.054 0.066 0.008 0.194 0.672 -0.014 0.503 0.492 

before 1918 (8) v 1918-1949 (13)  -0.010 0.530 0.640 0.310 0.848 -0.035 0.703 0.598 

before 1918 (8) v 1950-1979 (25)  -0.013 0.670 0.740 0.669 0.530 -0.026 0.672 0.610 

before 1918 (8) v after 1979 (34)  0.001 0.366 0.410 0.031 0.236 0.001 0.339 0.360 

before 1950 (21) v 1950-1979 (25)  -0.007 0.605 0.728 0.814 0.844 0.005 0.308 0.284 

before 1950 (21) v after 1979 (34)  0.009 0.205 0.186 0.010 0.186 0.012 0.214 0.242 

1918-1949 (13) v 1950-1979 (25) -0.010 0.654 0.720 0.976 0.982 0.007 0.315 0.328 

1918-1949 (13) v after 1979 (34) 0.010 0.259 0.186 0.038 0.448 0.011 0.268 0.308 

1950-1979 (25) v after 1979 (34) 0.007 0.218 0.216 0.090 0.312 -0.015 0.762 0.658 
  
 
 

B) microsatellites 

 Fst χ2 

Strata observed 
permutation 

p-value 

simulation
p-value 

(no errors)

simulation 
p-value  

(w/ errors) 
permutation 

p-value 

simulation
p-value 

(no errors)

simulation
p-value  

(w/ errors) 
Barrow (213) v SLI (25) 0.002 0.076 0.042 0.040 0.073* 0.126 0.138 

Barrow-F (115) v Barrow-S (98) 0.001 0.124 0.098 0.092 0.196 0.374 0.394 

SLI-F (14) v SLI-S (11) -0.007 0.947 0.988 0.986 0.972 1.000 1.000 

before 1918 (5) v 1918-1949 (9)  0.002 0.418 0.378 0.384 0.689 0.992 0.996 

before 1918 (5) v 1950-1979 (16)  -0.011 0.912 0.976 0.962 0.971 1.000 1.000 

before 1918 (5) v after 1979 (24)  0.002 0.406 0.356 0.348 0.346 0.956 0.952 

before 1950 (14) v 1950-1979 (16)  -0.004 0.791 0.844 0.840 0.758 0.998 1.000 

before 1950 (14) v after 1979 (24) 0.002 0.293 0.272 0.256 0.044 0.494 0.510 

1918-1949 (9) v 1950-1979 (16) 0.001 0.404 0.368 0.390 0.348 0.954 0.968 

1918-1949 (9) v after 1979 (24) 0.003 0.315 0.240 0.248 0.051 0.446 0.478 

1950-1979 (16) v after 1979 (24) -0.003 0.793 0.858 0.866 0.227 0.888 0.902 
*Givens et al. (2007) found significant differentiation for this stratification using Fisher’s exact test which has been shown to have more 
power than permutation-based Fst or χ2 tests (Goudet et al. 1996).  
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Table 4.  Summary of STRUCTURE results.  For each statistic, the p-value represents the proportion 
of the simulated datasets for which the value of the statistic was greater than or equal to the value 
observed for the empirical dataset.   
 
 

Summary statistic 
Observed 

value 
p-value 

(no errors) 
p-value 

(with errors)

Variance across individuals in logit-
transformed assignment probability 1.65 0.116 0.140 

FST between groups 0.006 0.330 0.292 

R2 for regression of Barrow spring samples 0.026 0.136 0.126 

Nearest-neighbor correlation coefficient 0.092 0.372 0.332 

Area between 3-phase step function and 
horizontal line 4.47 0.402 0.462 
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Figure 1. Mean values (solid lines) and 95-percentiles (dashed lines) for number of haplotypes 
(mtDNA) and alleles (microsatellites), heterozygosity, and Theta-h during 50 burn-ins.  
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Figure 2.  CART tree with primary splits used for age estimation.  Cases meeting the criteria at a node 
are sent down the left.  Roman numerals are leaf identifiers corresponding to rows in Table 2.  Values 
below leaf identifiers are estimated age bin of leaf. 
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Figure 3.  Median population abundance for 500 simulation replicates from 1848 to 2006.  Dashed 
lines bound the 95-percentile of abundance in each year. 
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A) End of burn-in 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B) End of whaling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Distribution of age within each demographic stage for all simulated individuals at the end of 
burn-in (A), and the end of whaling (B), for an example simulation replicate.  
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Figure 5.  Distribution of single-locus measures of genetic diversity in the empirical data (histograms 
over the 33 loci), and 500 replicates of the simulation (bold lines).  For mtDNA, the empirical data 
value is given by a single line.
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Figure 6.  Distribution of the number of loci out of Hardy-Weinberg equilibrium in the 500 replicates 
without (A) and with (B) errors included.  Numbers above the bars are the fraction of the total number 
of replicates represented by that bar. 
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Figure 7.  Distribution of p-values for Hardy-Weinberg equilibrium (HWE) without (A) and with (B) 
errors included.  Figures on left are distributions of locus p-values from Genepop (truncated to values 
≤ 0.1).  Figures on right are distributions of overall p-value using Fisher’s method. 
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Figure 8.  Variance in the logit-transformed assignment probability of individuals as a function of the 
number of iterations used in the STRUCTURE analyses.  Each point was obtained by calculating the 
variance for each sample across ten replicate analyses, and then averaging across samples. 
 
 

 
Figure 9.  STRUCTURE results for k=2 for the empirical dataset.  This analysis included all 33 loci, 
but excluded samples from Canada and the Sea of Okhotsk.  Only samples from the 33 locus reference 
set (i.e., those with genotypes for at least 30 out of 33 loci) were included.  Strata are numbered as in 
Givens et al. (2007): 1=spring Barrow, 2=fall Barrow, 3=spring Savoonga, 4=fall Savoonga, 5=spring 
Gambell, 6=fall Gambell, 7=spring Chukotka, 8=fall Chukotka, 9=Diomede, 10=Point Hope, 
11=Wainwright, 12=Kaktovik, 13=Nuiqsut. 
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Figure 10.  A three-phase step function fit to the plot of day of year versus red ancestry for the 
empirical data.  A smooth fit is also overlaid on the plot for comparison to the smooth fit shown in 
Givens et al. (2007). 
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Figure 11.  Back-transformed linear regression fit for logit (red ancestry) versus capture date for spring 
Barrow samples from the empirical dataset.  The slope of the regression was not statistically 
significant (p = 0.111). 
 
 


