
Status of the California Current Ecosystem:  
Major EBM Components 

Introduction 

Our main findings are: 

• The variability of seasonal upwelling onset (for example late upwelling in 2005) led to 
the collapse of Sacramento River fall-run Chinook salmon, Oregon coho, and Cassin’s 
auklets (Ptychoramphus aleuticus) in the Gulf of the Farallones.  Cumulative interactions 
between climate change and fishing pressure have resulted in severe CCLME salmon 
population declines, potentially resulting in severe societal costs in recent years. 

• Groundfish assemblages on the west coast have shown changes in abundance (number 
per km2) and assemblage structure from 2005 to 2009.  Seventeen species were chosen to 
represent broad functional groups.  More than half (10 of 17) of the groundfish species 
examined declined in abundance, while 5 showed no trend and only 2 increased.  
Shannon Diversity and top predator biomass of groundfish assemblages have also 
declined over this period. 

Below we present time series of indicators associated with each of our EBM components.  
For primary producers, we present annual winter and summer time series while mid and upper 
trophic species are examined on an annual basis.  For a summary of data sets included in this 
report, see Appendix C.  Analyses of groundfish and ecosystem health were repeated for each of 
four NMSs north of Point Conception and these results are presented in Appendix D. 

EBM Component: Central California Salmon 

Pacific salmon are among the most culturally important and economically valuable 
commercially fished species in the CCLME.  Significant fluctuations in salmon abundances and 
marine survival occurred throughout the CCLME during 2003–2008, leading to a number of 
dramatic management actions.  Chinook and coho salmon that emigrate from rivers from 
California to Oregon reside in coastal waters for a period of time before migrating up the coast.  
It is in these coastal waters that the greatest mortality occurs.  A poor environment can lead to 
reduced early growth and ultimately poor survival and recruitment to the spawning stock 
(Beamish and Mahnken 2001, Beamish et al. 2004, Wells et al. 2008). 

Coho salmon hatchery returns (OPI) were below average in 2005 and 2006 (Figure 4), 
pointing to poor ocean conditions in 2004 and 2005, the years of ocean entry.  These years, 
though demonstrating reduced returns, were not as poor as during the mid-1990s (Peterson and 
Schwing 2003).  Juvenile coho salmon growth off the west coast of Vancouver Island in 2005 
was the lowest on record since 1998 (DFO 2006). 
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Figure 4.  Coho salmon percent, smolt-adult return, 1970–2006.  Dashed lines reflect 1 SD above and 

below the long-term mean. 

Key Attribute: Population Size 

Indicator: Spawning escapement 

There are four temporally segregated Chinook salmon runs in the Central Valley.  Such 
diversity in life history buffers Chinook salmon against environmental variability.  However 
anthropogenic impacts have resulted in an unnaturally large contribution of a fall run and three 
less productive runs (Lindley et al. 2009b).  Estimates of Central Valley spawning escapement 
are used to set fishery limits to ensure that spawner numbers remain high enough for populations 
to remain viable. 

Chinook salmon fall escapement had an increasing trend, though the values have 
plummeted since 2002 (Figure 5).  There was also a near complete reproductive failure for the 
2004 and 2005 brood years (Figure 5).  As a result, there were exceptionally low adult returns to 
fall-run California Central Valley in 2007–2008.  The fall-run Chinook salmon collapse may 
have been caused by climatic conditions that produced little food in the ocean (e.g., delayed 
upwelling in the ocean-entry year 2005) combined with a reliance on a hatchery-reared 
homogeneous salmon population instead of a varied wild salmon population (Lindley et al. 
2009a).  The Central Valley late fall-run population also experienced peak escapement in the 
early 2000s, but has not demonstrated the same decline experienced by the fall-run population.  
The Central Valley winter-run population actually had the highest escapement values in the most 
recent years.  Finally, the Central Valley spring-run population experienced its greatest returns in 
the mid-1980s and has since remained relatively flat. 

This asynchrony in population escapement trends indicates that the populations are likely 
exposed to different environmental or management forces.  In fact, two of these populations are 
threatened or endangered (spring and winter run) and, therefore, attempts are made to avoid 
catches in the fishery.  However, it is also important to recognize that variability in the timing of 
spawning, emigration, and distribution could have an effect on the ultimate production of the 
stocks as well, which could result in the asynchrony shown here.  Unlike Central Valley 
populations, the Klamath River fall-run population appears to have variable spawning 
escapement over the last 30 years with no particular trend apparent (Figure 5).  However, there 
does appear to be an episode to the Klamath escapement values likely related to large-scale 
oceanographic conditions (e.g., ENSO). 
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Figure 5.  Spawning escapement for Central Valley (CV) populations and Klamath River fall-run 

populations of Chinook salmon.  Data represent total returns to spawning grounds (hatchery plus 
natural).  For the CV, fall run Chinook are plotted on the left primary vertical axis and the other 
stocks are plotted on the right vertical axis. 

A primary goal will be to determine the natural and managerial forces driving variability 
within and between Chinook salmon populations from the Klamath and Sacramento rivers.  Such 
information will help improve the utility of a spawning escapement index toward evaluating the 
health of both populations. 

Indicator: Population growth rate 

The Sacramento River fall-run Chinook salmon population has shown an average 15% 
decline in growth rate over the last 10 years with an exceptional 48% decline in the last 5 years 
(Figure 6), which could make recovery slow.  Not shown in Figure 6, Sacramento winter-run and  
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Figure 6.  Population growth rates for Sacramento River fall-run Chinook salmon (the largest component 

of the Central Valley Chinook fall runs) and Klamath River fall-run Chinook salmon.  The 
growth rate for the Sacramento River fall run was calculated as the proportional change in the 
Sacramento Index between successive years.  The Sacramento Index represents the ocean 
abundance of age-3 fish calculated by summing later harvest and escapement values.  The growth 
rate of the Klamath River fall run was calculated based on the ocean abundance of age-3 Klamath 
River fall-run fish. 

spring-run Chinook salmon have also experienced precipitous declines in growth rates over the 
last 5 years (38% and 61%, respectively).  Unlike the Sacramento River Chinook salmon, 
Klamath River fall-run Chinook salmon did not experience any particularly dramatic trend in 
growth rates over the last 5 to 10 years (Figure 6).  Instead, growth rate was relatively stable but 
punctuated by extremely productive years.  It is likely these bumps in growth rate are corrections 
following poor productivity years, such as during the 1983 and 1998 ENSO events.  These 
differences between Sacramento River and Klamath River populations may be caused by a 
combination of managerial or environmental differences experienced by the fish. 
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As with the future direction for improving the spawning escapement index, a future goal 
will be to determine the forces driving variability within and between Chinook salmon 
populations from the Klamath and Sacramento rivers.  Such information will help improve the 
utility of a growth rate index toward evaluating the health of the both populations. 

Indicator: Hatchery contribution 

Population viability is dependent in part on maintaining life history diversity in the 
population.  Hatchery production is a relatively homogeneous life history type relative to 
naturally produced populations.  If natural production is reduced, the population can be at risk 
during periods of increased environmental variability.  In recent years, the contribution of 
hatchery fish to the population has increased substantially.  That the number of hatchery fish 
produced has remained relatively stable indicates that the remaining natural spawners have 
diminished.  Therefore the natural population is at increased risk (Lindley et al. 2007).  The 
proportion of fall-run Chinook salmon spawning in hatcheries, a corollary to the actual 
contribution of hatchery fish to the population, has increased dramatically in the Central Valley 
over the last 5 years (Figure 7).  Such an increase is indicative of a diminished production of 
natural populations and could indicate constriction of life history diversity.  Fall-run Chinook 
salmon from the Klamath River did not experience any particular trend over the years and 
recently have not demonstrated an increase in the hatchery contribution (Figure 7). 

The methodology used here to estimate hatchery contribution is flawed.  Specifically, it 
simply calculates the proportion of fish that spawn at hatcheries with no consideration to straying 
rates.  Therefore, it likely underestimates the contribution of hatchery fish.  Improvements to the 
index could come from using genetic sampling, otolith chemistry, and systematic proportional 
tagging of hatchery fish. 

Key Attribute: Population Condition 

Indicator: Age structure 

A diverse age structure is important to improve the viability of a population.  Larger, 
older Chinook salmon produce more and larger eggs.  Therefore, they produce a brood which 
may contribute proportionally more to the later spawning population than broods from younger, 
smaller fish.  However, the diversity of ages, including younger fish, is important to 
accommodate variability in the environment.  If mortality on any given cohort is great, there is 
benefit to having younger spawners.  This bet hedging is a critical aspect of Chinook salmon 
populations that allows them to naturally mitigate year-to-year environmental variability. 

While Central Valley Chinook salmon stocks lack age-specific data to evaluate age 
structure of the population, the Klamath River fall run has sufficient data.  Examination of the 
proportional contribution of each age to the spawning stock demonstrates that the largest fraction 
of the spawning population is age-3 and age-4 fish (Figure 8).  In addition, there has been a 
declining fraction of age-2 spawning over the years.  However, little should be made of this 
negative trend, as it seems to be driven in large part by a few extraordinary years.  Overall, no 
recent trends are apparent in the age structure of Klamath River Chinook salmon and it actually 
appears relatively stable across the last 30 years.  This evaluation of Klamath River Chinook 

 64



 

 
Figure 7.  Proportions of Chinook salmon from the Central Valley fall-run and Klamath River fall-run 

populations that spawned in hatcheries.  This is only an index of hatchery contribution, as 
estimates of hatchery fish spawning in natural areas are not available. 

salmon should not be extrapolated to Central Valley Chinook salmon.  As indicated in nearly 
every example shown here, the Central Valley Chinook populations seem not to correlate to the 
Klamath River population with any regularity.  It is likely that fish from the Central Valley did 
demonstrate a change in age structure in recent years.  Specifically, 2005–2008 represented 
consistently poor conditions; therefore, the age structure of a 3-year cohort was less likely to 
mitigate this lower frequency environmental event.  With the recent implementation of 
standardized proportional tagging of hatchery fish, better estimates of age structure variability 
will become available for Central Valley Chinook salmon. 
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Figure 8.  Time series of run size estimates for each age of returning Klamath River fall-run Chinook 

salmon in given years are in the upper plot.  Specifically, this figure represents the age structure 
of the Klamath River fall-run population during any given year.  As indicated by the lower plot, 
there was only a trend in the age-2 group; namely, the proportion of fish returning to spawn at age 
2 has declined.  However, examination of the time series (upper plot) shows that the trend is 
likely derived from a few years (e.g., 1982 and 1985) that represented enormous numbers of age-
2 fish returns. 

Indicator: Spatial stock structure 

A more comprehensive evaluation of the spatial structure of central California salmon 
stocks will be completed in 2011. 

Indicator: Size at age 

A more comprehensive evaluation of size at age for central California salmon will be 
completed in 2011. 
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EBM Component: Sturgeon 

Generally, little data are available on the abundance or condition of green sturgeon 
populations, yet the southern stock is considered likely to become an endangered species in the 
foreseeable future.  This concern is based on the drastic reduction of spawning habitat above 
Shasta Dam on the Sacramento River and Oroville Dam on the Feather River, California (Adams 
et al. 2007).  There has also been a large decline in the number of juveniles entrained in water 
diversion projects, indicating a reduction in the production of the populations.  The northern 
population is not currently considered to be in danger of extinction (Adams et al. 2007). 

Key Attribute: Population Size 

Indicator: Spawning escapement 

Spawning abundance was estimated systematically for the first time in 2010, using sonar 
and underwater video to count green sturgeon in their summer holding pools on the Sacramento, 
Klamath, and Rogue rivers.  Over time, these surveys can be repeated to generate estimates of 
population growth rate. 

Indicator: Juvenile abundance 

Catch of juvenile green sturgeon in fish traps at large water diversions is available for the 
past several decades and will likely be available for some time in the future, until a planned 
major reorganization of water infrastructure in California’s Central Valley radically alters the 
hydrology and operation of pumping plants.  The number of Sacramento River sturgeon 
juveniles captured at water diversions has dropped, indicating reduced production of the 
population.  Catches at these pumping plants may be an index of recruitment to the population, 
although the factors affecting the sampling performance of these pumps are unknown. 

Key Attribute: Population Condition 

Indicator: Age structure 

This will be completed in a future IEA. 

Indicator: Spatial structure 

Tagging studies of green sturgeon conducted by SWFSC and NWFSC have collected a 
large amount of data on the habitat associations and movement of green sturgeon within and 
among the coastal Pacific Ocean, spawning rivers, and estuaries of nonnatal rivers.  These data 
are being used to create dynamic models of green sturgeon distribution.  A spawning river model 
for the Sacramento River has been completed (Mora et al. 2009) and a marine distribution model 
is in development. 
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EBM Component: Groundfishes 

Because of their ecological importance and high value as recreational and commercial 
fisheries, groundfish are an important component of the California Current ecosystem.  Time 
series of groundfish catch expressed as number of fish km-2 provide indicators of changes in 
abundance.  Time series of size distribution provide indicators of changes in population structure 
(e.g., many young fish or more older fish).  Changes in spatial distribution can indicate responses 
to climate or localized fishing effects. 

The combined data from the AFSC triennial and NWFSC annual trawl surveys (see Table 
7 through Table 10 for trawl survey characteristics, net details, triennial survey effort, and annual 
survey effort, respectively) contained more than 349 taxa identifiable to species—far too many to 
present here.  For each of the groundfish indicators below, a subset of 17 species was chosen for 
analysis and presentation (Table 11).  These species represent the most common species from 
each of the 17 functional groups used in the Horne et al. (2010) ecosystem model of the 
California Current.  Thus the 17 groundfish that we cover are representative of groups of fish 
from different habitats and trophic guilds.  These 17 species comprise about 80% of the total 
number of species captured. 

Key Attribute: Population Size 

Groundfish number was selected as the sole indicator for groundfish population size.  
Time series of groundfish abundance follow a standard format with additional statistical 
information presented on each figure.  The triennial and NWFSC data were not combined 
because of differences in survey design (see Appendix C). 

Ten of 17 species showed declines during the 2005–2009 period that were greater than 
1 SD of the NWFSC time series for said species (Figure 9 through Figure 12).  These species 
include: Pacific hake, stripetail rockfish (Sebastes saxicola) (small shallow rockfishes), Dover  

Table 7.  Characteristics of the triennial and NWFSC groundfish trawl surveys.  (Data courtesy of Melissa 
Haltuch, NWFSC.) 

 Triennial survey NWFSC survey 
Time extent 1977–2004 1998–present 
1977 not used Shelf added in 2003  
Vessel Alaska class commercial vessels, 

65–147 m 
West Coast groundfish commercial vessels, 
65–93 m 

Survey design Line transect survey, random 
trawls on same lines 

Stratified random survey 

Survey timing 1980–1992 later 
1995–2004 earlier 

Consistent 

Depth and range Varies over time, 55–336 m, 55–
500 m, lat 36.8°N, lat 34.5°N, 
excludes Point Conception 

Consistent, 55–1,280 m since 2003, lat 
32.5°N to lat 48.17°N, includes Point 
Conception 
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Table 8.  Comparison of net characteristics for the triennial and NWFSC groundfish trawl surveys.  (Data 
courtesy of Melissa Haltuch, NWFSC.) 

Triennial survey NWFSC survey 
High opening Nor’Eastern trawl 4 panel Aberdeen style trawl 
76.2 m net to doors 62.5 m net to doors 
Roller gear (37.4 m footrope) Continuous disk footrope (32.5 m) 
Bare wire bottom bridles 20.3 cm disk partway into bridles 
1.8 m × 2.7 m V-door 1.5′ × 2.1′ V-door 
12.7 cm mesh, 8.9 cm codend, 3.2 cm liner 13.9 cm mesh, 12.7 cm codend, 3.8 cm liner 
30 minute tow 15 minute tow 
3.0 knot towing speed 2.2 knot towing speed 
Little or no mud cloud between doors and net due 
to lack of disks in wings (little herding) 

Mud cloud between doors and net due to disks in 
wings (enhanced herding) 

Strong avoidance of rocky areas Able to tow closer to rocky areas 

 

Table 9.  Distribution of survey effort for the AFSC triennial survey among latitudes and years.  (Data 
courtesy of Mark Wilkins, AFSC.) 

Latitude 1980 1983 1986 1989 1992 1995 1998 2001 2004 
34 — — — 14 13 12 12 12 13 
35 — — — 22 11 15 16 16 12 
36 6 6 2 12 10 11 11 12 9 
37 27 26 27 58 53 32 33 32 26 
38 25 23 26 31 29 33 32 32 20 
39 13 13 14 18 16 17 18 17 16 
40 12 12 10 14 14 15 16 16 14 
41 16 18 15 23 23 23 23 23 20 
42 10 33 8 22 20 20 21 22 17 
43 77 82 38 25 28 27 30 29 27 
44 66 79 46 45 46 41 44 43 36 
45 21 27 34 67 66 38 39 39 33 
46 82 86 54 46 47 32 31 33 26 
47 35 48 105 37 32 28 29 27 29 
48 50 90 127 74 73 55 66 51 17 

 

sole (Microstomus pacificus), rex sole (Glyptocephalus zachirus) (small flatfishes), chilipepper 
(Sebastes goodei) (midwater rockfishes), spiny dogfish (small demersal sharks), shortbelly 
rockfish (Sebastes jordani), white croaker (Genyonemus lineatus) (miscellaeneous nearshore 
demersal fishes), canary rockfish, and longnose skate (Raja rhina) (skates and rays).  Five 
species had stable population trends over the 5-year period: sablefish, redstripe rockfish 
(Sebastes proriger) (shallow large rockfishes), splitnose rockfish (Sebastes diploproa) (deep 
small rockfishes), darkblotched rockfish (S. crameri) (deep large rockfish), and yelloweye 
rockfish (S. ruberrimus).  Only lingcod (Ophiodon elongatus) (representing large demersal 
predators) and arrowtooth flounder (Atheresthes stomias) (large flat fishes) increased. 
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Table 10.  Distribution of trawl effort for the annual NWFSC survey.  (Data courtesy of Beth Horness, 
NWFSC.) 

Latitude 2003 2004 2005 2006 2007 2008 2009
34 30 28 41 24 33 31 41
35 12 12 11 9 17 12 18
36 7 8 14 9 10 13 6
37 18 21 27 22 20 28 36
38 18 25 29 25 25 26 25
39 11 13 19 16 5 17 8
40 13 5 14 9 14 4 8
41 20 9 19 8 14 12 20
42 28 15 21 21 16 20 16
43 10 17 30 36 31 17 25
44 18 32 46 39 39 47 39
45 18 22 26 39 44 31 34
46 15 24 27 23 32 24 27
47 33 21 19 20 29 31 28
48 38 23 21 16 20 15 18

 

Table 11.  Groundfish functional groups and representative species (from Horne et al. 2010). 

Functional group Representative species Scientific name 
Hake Pacific hake Merluccius productus 
Shallow small rockfish Stripetail rockfish Sebastes saxicola 
Sablefish Sablefish Anoplopoma fimbria 
Dover sole Dover sole Microstomus pacificus 
Shallow large rockfish Redstripe rockfish Sebastes proriger 
Deep small rockfish Splitnose rockfish Sebastes diploproa 
Small flatfish Rex sole Glyptocephalus zachirus 
Midwater rockfish Chilipepper rockfish Sebastes goodei 
Small demersal sharks Spiny dogfish Squalus acanthias 
Shortbelly rockfish Shortbelly rockfish Sebastes jordani 
Large flatfish Arrowtooth flounder Atheresthes stomias 
Deep large rockfish Darkblotched rockfish Sebastes crameri 
Misc. nearshore demersal fish White croaker Genyonemus lineatus 
Canary rockfish Canary rockfish Sebastes pinniger 
Large demersal predators Lingcod Ophiodon elongatus 
Skates and rays Longnose skate Raja rhina 
Yelloweye rockfish Yelloweye rockfish Sebastes ruberrimus 

 

Over longer periods, however, some species show different trends.  For example, while 
currently stable, sablefish populations clearly declined from 2003 to the 2009 survey.  For 
chilipepper rockfish, the 5-year trend showed a decrease in numbers per square kilometer, but the 
final 3 years of the trend appear to have stabilized. 
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Figure 9.  Catch per unit effort (CPUE) (number per km2) for four groundfishes from 1980 to 2009 for the 

triennial trawl survey (open circles, data courtesy of Mark Wilkins, AFSC) and the NWFSC trawl 
survey (closed circle, data courtesy of Beth Horness, NWFSC).  Mean and SD are the mean and 
standard deviation of the NWFSC time series, Diff.trend is the absolute change in the predicted 
trend over 5 years, and 5-year nslope is the slope of normalized data for comparison across 
species.  The solid line is the mean for the 7-year NWFSC data.  Dotted lines are ±1 SD.  The 
trend line (thick black) is the 5-year trend.  Symbols in the upper right indicate whether the 5-year 
trend decreased or showed no change relative to 1 SD of NWFSC data. 
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Figure 10.  CPUE (number per km2) for four groundfishes from 1980 to 2009 for the triennial trawl 

survey (open circles, data courtesy of Mark Wilkins, AFSC) and the NWFSC trawl survey 
(closed circle, data courtesy of Beth Horness, NWFSC).  Mean and SD are the mean and standard 
deviation of the NWFSC time series, Diff.trend is the absolute change in the predicted trend over 
five years, 5-year nslope is the slope of normalized data for comparison across species.  The solid 
line is the mean for the 7-year NWFSC data.  Dotted lines are ±1 SD.  The trend line (thick black) 
is the 5-year trend.  Symbols in the upper right indicate whether the 5-year trend decreased or 
showed no change relative to 1 SD of NWFSC data.  Data are the year effect from the GAM 
model and not absolute estimates of abundance. 
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Figure 11.  CPUE (number per km2) for four groundfishes from 1980 to 2009 for the triennial trawl 

survey (open circles, data courtesy of Mark Wilkins, AFSC) and the NWFSC trawl survey 
(closed circle, data courtesy of Beth Horness, NWFSC).  Mean and SD are the mean and standard 
deviation of the NWFSC time series, Diff.trend is the absolute change in the predicted trend over 
5 years, 5-year nslope is the slope of normalized data for comparison across species.  The solid 
line is the mean for the 7-year NWFSC data.  Dotted lines are ±1 SD.  The trend line (thick black) 
is the 5-year trend.  Symbols in the upper right indicate whether the 5-year trend increased, 
decreased, or showed no change relative to 1 SD of NWFSC data.  Data are the year effect from 
the GAM model and not absolute estimates of abundance. 
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Figure 12.  CPUE (number per km2) for five groundfishes from 1980 to 2009 for the triennial trawl 

survey (open circles, data courtesy of Mark Wilkins, AFSC) and the NWFSC trawl survey 
(closed circle, data courtesy of Beth Horness, NWFSC).  Mean and SD are the mean and standard 
deviation of the NWFSC time series, Diff.trend is the absolute change in the predicted trend over 
5 years, 5-year nslope is the slope of normalized data for comparison across species.  The solid 
line is the mean for the 7-year NWFSC data.  Dotted lines are ±1 SD.  The trend line (thick black) 
is the 5-year trend.  Symbols in the upper right indicate whether the 5-year trend increased, 
decreased, or showed no change relative to 1 SD of NWFSC data.  Data are the year effect from 
the GAM model and not absolute estimates of abundance. 
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There are three areas for potential improvement of the current indicators: 1) integration of 
the AFSC and NWFSC surveys, 2) development of more species-specific statistical models, and 
3) the development of composite indicators. 

While there are important differences in the methodologies of the two trawl surveys, 
future work should examine the possibility of integrating the two time series.  Approaches have 
been developed for the integration of time series of different quality (Drake et al. 2010).  Several 
species showed similar estimates of number per square kilometer for the overlapping year of 
2004.  Others showed similar overall trends, although absolute numbers differed.  This 
integration will need to be done carefully, since different net sizes and trawl speeds are likely 
sampling different components (size distributions) of the relevant populations. 

In the present report, abundance estimates for all species were derived from the same 
relatively simple statistical model using data covering the same latitudinal and depth extents and 
were limited to the shelf and shallow slope (shallower than 350 m).  To provide better abundance 
estimates, it may be fruitful to develop more complex statistical models tailored to individual 
species. 

Many species (including those not presented here) showed similar trends.  Therefore, 
future work could focus on developing composite metrics that combine information from 
multiple species into one or several time lines to simplify presentation. 

Key Attribute: Population Condition 

Indicator: Size structure 

For each species, the quartiles were calculated for length of all individuals collected 
during the first year of each survey (triennial survey 1980, NWFSC survey 2003).  In instances 
when there were less than 20 individuals of a species measured during a year, the first year in 
which there were more than 20 individuals was used. 

A number of species showed changes in size structure (Figure 13 through Figure 16).  For 
example, the proportion of small hake increased from 2003 to 2009.  For chilipepper rockfish, 
the proportion of older individuals increased from 2003 to 2009.  Taken in conjunction with the 
numbers trends above, chilipepper show an aging and declining population.  Note also that 
results from the two surveys do not match well.  This is to be expected for two reasons.  First, 
differences in trawl methodology (net size, tow duration, tow speed) mean that the two surveys 
sampled different components of the population.  Second, quartiles in each survey are calculated 
relative to the first year of the survey, and the precise size ranges likely differ. 

Future work should investigate the possibility of combining the two data sets to give a 
better understanding of long-term changes in size structure and the mechanisms causing size 
shifts. 

Indicator: Spatial structure 

Annual variation in the distribution of groundfishes was examined by comparing 
abundances (CPUE estimated as number per km2) in 1° latitudinal bins at lat 34–48°N along the  
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Figure 13.  Size distribution for four groundfishes from 1980 to 2009.  Plots show the proportion of fish 

in the first (solid), second (dashed), third (dotted), and fourth (dot-dash) quartiles.  Gray lines are 
triennial survey data (courtesy of Mark Wilkins, AFSC), and black lines are NWFSC survey data 
(courtesy of Beth Horness, NWFSC).  To show change in size structure through time, size cutoffs 
for the quartiles were established based on the first year in each time series (1980 and 2003).  
Subsequent years show proportion of fishes in those size classes. 
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Figure 14.  Size distribution for four groundfishes from 1980 to 2009.  Plots show the proportion of fish 

in the first (solid), second (dashed), third (dotted), and fourth (dot-dash) quartiles.  Gray lines are 
triennial survey data (courtesy of Mark Wilkins, AFSC), and black lines are NWFSC survey data 
(courtesy of Beth Horness, NWFSC).  To show change in size structure through time, size cutoffs 
for the quartiles were established based on the first year in each time series (1980 and 2003).  
Subsequent years show proportion of fishes in those size classes. 
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Figure 15.  Size distribution for four groundfishes from 1980 to 2009.  Plots show the proportion of fish 

in the first (solid), second (dashed), third (dotted), and fourth (dot-dash) quartiles.  Gray lines are 
triennial survey data (courtesy of Mark Wilkins, AFSC), and black lines are NWFSC survey data 
(courtesy of Beth Horness, NWFSC).  To show change in size structure through time, size cutoffs 
for the quartiles were established based on the first year in each time series (1980 and 2003).  
Subsequent years show proportion of fishes in those size classes. 
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Figure 16.  Size distribution for five groundfishes from 1980 to 2009.  Plots show the proportion of fish in 

the first (solid), second (dashed), third (dotted), and fourth (dot-dash) quartiles.  Gray lines are 
triennial survey data (courtesy of Mark Wilkins, AFSC), and black lines are NWFSC survey data 
(courtesy of Beth Horness, NWFSC).  To show change in size structure through time, size cutoffs 
for the quartiles were established based on the first year in each time series (1980 and 2003).  
Subsequent years show proportion of fishes in those size classes. 

 

 79



West Coast.  The data selection in terms of latitude and depth ranges followed that use in 
groundfish numbers above. 

As with groundfish numbers, results for both the triennial and NWFSC surveys are 
presented on the same figures.  However, given differences between the two surveys, they should 
not be directly compared.  As such, trends are interpreted within time series.  When examining 
triennial survey results, note that the 34° and 35°N latitude bins were not sampled from 1980 to 
1986, so southern expansions (e.g., stripetail rockfish) into these latitudes in the triennial survey 
are not real. 

Many species showed some variation in their spatial distributions through time (Figure 17 
through Figure 20).  For example in the triennial survey, Pacific hake show a northerly shift from 
1980 to 1992 and a more bimodal distribution in 1995.  In the NWFSC survey, hake are 
distributed to the north in 2003 but farther south in 2008, then back north in 2009.  Spiny dogfish 
have also shown recent changes in distribution.  Both surveys show a generally northern 
distribution through 2004, after which dogfish were more abundant in the southern half of the 
sampled range.  Other species have shown relatively stable spatial distributions.  Arrowtooth 
flounder maintained a northern distribution across both time series, although in the NWFSC 
surveys their relative abundance at midlatitudes has fluctuated.  For example, rex sole were 
distributed primarily to the north across both time series. 

There are two potential areas for improvement of present analyses.  First, at present a 
relatively simple statistical approach standardized for all species was used to estimate the CPUE 
by latitude bin.  Future improvements may seek to implement more complex estimation 
approaches (e.g., delta-generalized linear model) and tailor models to each indicator species.  
Second, the current presentation of spatial distribution is complex and difficult to interpret.  It 
may be necessary to maintain a similar presentation to fully understand species distributions.  
However, it would be beneficial to produce a more simplified metric for each species that would 
be more easily visually interpreted.  Integration of data sources and improved statistical 
approaches will improve the utility of this indicator. 

EBM Component: Ecosystem Health 

As noted in the Selecting and Evaluating Indicators for the California Current section, the 
concept of ecosystem health is technically problematic, but the term has become part of EBM 
and thus we use it here.  In our framework, ecosystem health is defined specifically by the key 
attributes we developed in that section. 

Note on the figures that presentation of the time series of most indicators follows a 
standard format with additional statistical information displayed on each figure.  When 
groundfish data were used, statistics pertain only to the NWFSC data because of differences in 
survey design (see Appendix C).  In these cases, the relationship of the mean of the final 5 years 
of the time series was not compared to the mean of the NWFSC time series because the latter 
was only 7 years long. 

Indicators of ecosystem health necessarily cover diverse taxa and require data from broad 
geographic areas.  Time constraints prevented us acquiring and integrating data representing  
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Figure 17.  Spatial distribution of four groundfish from 1980 to 2009.  Data are CPUE (number per km2) 

presented in 10 latitude bins from lat 34°N (y-axis minimum) to lat 48°N (y-axis maximum).  
Data are relative within years and absolute values should not be compared across years as axes 
may vary.  Letters following year headings indicate triennial (t, data courtesy of Mark Wilkins, 
AFSC) or NWFSC (n, data courtesy of Beth Horness, NWFSC) surveys.  Due to difference 
between the two surveys, trends between the two should be made with caution.  Both surveys 
were conducted in 2004. 

some components of the ecosystem for this year’s report.  Throughout this section, we note 
crucial data gaps that will be filled in the coming year and incorporated into subsequent 
iterations of the California Current IEA. 

Key Attribute: Community Composition 

Indicator: Diversity 

Shannon Diversity—The Shannon Diversity Index takes into account the number of 
species and the evenness of those species in a sample (Magurran 1988).  The index increases 
with the addition of unique species or with more even representation of species (greater 
evenness). 

Shannon Diversity (loge) for West Coast groundfishes was estimated from the triennial 
survey and the NWFSC survey.  A subset of the available data was used including trawls  
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Figure 18.  Spatial distribution of four groundfish from 1980 to 2009.  Data are CPUE (number per km2) 

presented in 10 latitude bins from lat 34°N (y-axis minimum) to lat 48°N (y-axis maximum).  
Data are relative within years and absolute values should not be compared across years as axes 
may vary.  Letters following year headings indicate triennial (t, data courtesy of Mark Wilkins, 
AFSC) or NWFSC (n, data courtesy of Beth Horness, NWFSC) surveys.  Due to difference 
between the two surveys, trends between the two should be made with caution.  Both surveys 
were conducted in 2004. 

between 50–350 m and 34–38°N latitude.  AFSC data included the years 1980–2004 (every third 
year), while NWFSC data included 2003–2009 data.  See Appendix C for further details. 

The 5-year trend for Shannon Diversity showed a decrease from 2005 to 2009  
(Figure 21), indicating some change in assemblage structure for West Coast groundfishes.  
Notably the 2009 estimate was similar to the 2003 value, suggesting a return to an earlier state.  
Future monitoring will need to determine whether Shannon Diversity continues to decline or 
levels off. 

Estimates of Shannon Diversity are not easily comparable between the triennial data and 
the NWFSC data.  Shannon Diversity in 2004 was higher in the NWFSC surveys than in the 
triennial surveys. 

Taxonomic distinctness—TD is a diversity metric that quantifies the relatedness of 
species in a sample based on the distance between species pairs in a taxonomic tree (see  
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Figure 19.  Spatial distribution of four groundfish from 1980 to 2009.  Data are CPUE (number per km2) 

presented in 10 latitude bins from lat 34°N (y-axis minimum) to lat 48°N (y-axis maximum).  
Data are relative within years and absolute values should not be compared across years as axes 
may vary.  Letters following year headings indicate triennial (t, data courtesy of Mark Wilkins, 
AFSC) or NWFSC (n, data courtesy of Beth Horness, NWFSC) surveys.  Due to difference 
between the two surveys, trends between the two should be made with caution.  Both surveys 
were conducted in 2004. 

Appendix C).  Changes in TD indicate changes in the deeper evolutionary makeup of the 
community, not just the number or evenness of species in a system.  High AvTD values indicate 
low relatedness of species or taxa in the sample.  VarTD is a measure of the regularity of branch 
lengths within the taxonomic tree for that sample, not the variance of AvTD among samples.  
See Appendix C for more details. 

AvTD and VarTD (Clarke and Warwick 1998a, Clarke and Warwick 2001b) for West 
Coast groundfishes were estimated from the triennal survey and the NWFSC trawl survey (see 
Appendix C for further details).  A subset of the available data was used: trawls between 50–350 
m and 34–38°N latitude.  Triennial data included the years 1980–2004 (every third year), while 
NWFSC data included 2003–2009 data.  Yearly estimates were derived separately for each time 
series. 

AvTD (Figure 22) increased slightly but steadily from 1980 to 1998.  The trend over the 
last 5 years of the NWFSC time series was for a decline in AvTD, but this decline was based  
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Figure 20.  Spatial distribution of five groundfish from 1980 to 2009.  Data are CPUE (number per km2) 

presented in 10 latitude bins from lat 34°N (y-axis minimum) to lat 48°N (y-axis maximum).  
Data are relative within years and absolute values should not be compared across years as axes 
may vary.  Letters following year headings indicate triennial (t, data courtesy of Mark Wilkins, 
AFSC) or NWFSC (n, data courtesy of Beth Horness, NWFSC) surveys.  Due to difference 
between the two surveys, trends between the two should be made with caution.  Both surveys 
were conducted in 2004. 
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Figure 21.  Annual mean Shannon Diversity for lat 34–48°N and 50–350 m bottom depth.  Open circles 

show yearly averages calculated from triennial trawl survey (data courtesy of Mark Wilkins, 
AFSC).  Closed circles show results for the NWFSC trawl survey (data courtesy of Beth Horness, 
NWFSC).  Mean and SD are the mean and standard deviation of the NWFSC time series, 
Diff.trend is the absolute change in the predicted trend over 5 years.  The solid line is the mean 
for the NWFSC data.  Dotted lines are ±1 SD.  The trend line (thick black) is the 5-year trend.  
Symbol in the upper right indicates that the 5-year trend decreased relative to 1 SD of NWFSC 
data.  Data are the year effect from the GAM model and not absolute estimates of diversity. 

largely on one data point.  VarTD (Figure 22) showed an overall increase from the early 1990s, 
but the 5-year trend is presently stable. 

TD of zooplankton in the California Current was largely stable over the last 5 years 
except during the winter (Figure 23 and Figure 24).  Winter values during the last 5 years have 
trended up for AvTD.  For both metrics, the 5-year mean was within 1 SD of the long-term 
mean in all cases. 

The trend in TD indicates that the structure of the groundfish assemblage has changed 
since 1980 to some degree.  Caution should be used in interpreting the results and further 
investigation of the data is necessary to fully understand the significance of the change.  Higher 
diversity (usually measured as richness but here measured as AvTD) is generally considered 
good because of biodiversity-ecosystem function relationships (Stachowicz et al. 2007).  
However, the West Coast groundfish assemblage contains many closely related rockfishes 
(Sebastes), which leads to low AvTD values and high VarTD (Tolimieri and Anderson 2010).  A 
reduction in the frequency of occurrence of rockfishes would cause the reverse trend—an 
increase in AvTD, as the species present would be less related, and a decrease in VarTD, as 
branch lengths between species became more regular. 
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Figure 22.  AvTD and VarTD for West Coast groundfishes from 1980 to 2009 for lat 34–48°N and 50–

350 m bottom depth.  Closed circles show results for the NWFSC trawl survey (data courtesy of 
Beth Horness, NWFSC).  Mean and SD are the mean and standard deviation of the NWFSC time 
series, Diff.trend is the absolute change in the predicted trend over 5 years.  The solid line is the 
mean for the NWFSC data.  Dotted lines are ±1 SD.  The trend line (thick black) is the 5-year 
trend.  Symbols in the upper right indicates whether the 5-year trend decreased or showed no 
change relative to 1 SD of NWFSC data.  Data are the year effect from the GAM model and not 
absolute estimates of the metrics. 
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Figure 23.  AvTD of California Current zooplankton from 1996 to 2008 in four seasons.  Mean and SD 

are the mean and standard deviation of the NWFSC time series, Diff.trend is the absolute change 
in the predicted trend over 5 years.  Dotted lines are ±1 SD.  The trend line (thick black) is the 5-
year trend.  Symbols in the upper right box indicate whether the 5-year trend increased or showed 
no change relative to 1 SD of NWFSC data.  Symbols in the lower right box indicate that the 5-
year mean showed no change relative to the long-term mean.  Data are the year effect from the 
GAM model and not absolute estimates of the metrics. 
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Figure 24.  VarTD of California Current zooplankton from 1996 to 2008 in four seasons.  Mean and SD 

are the mean and standard deviation of the NWFSC time series, Diff.trend is the absolute change 
in the predicted trend over 5 years.  Dotted lines are ±1 SD.  The trend line (thick black) is the 5-
year trend.  Symbols in the upper right box indicate that the 5-year trend showed no change 
relative to 1 SD of NWFSC data.  Symbols in the lower right box indicate that the 5-year mean 
showed no change relative to the long-term mean.  Data are the year effect from the GAM model 
and not absolute estimates of the metrics. 
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Indicator: Seabird reproduction indices 

While there are a handful of seabird colonies with long-term monitoring programs in 
place (Appendix C), no single coast-wide indicator has been developed.  Future work will 
endeavor to develop a coast-wide seabird reproductive index based on a multivariate approach 
(Frederiksen et al. 2007) that integrates data sets from a variety of long-term seabird colony 
monitoring programs along the Pacific coast. 

Indicator: The northern copepod biomass anomaly 

The northern copepod biomass anomaly measures whether copepod species from 
northern waters are more or less common than normal off the Oregon coast.  It is responsive to 
climate effects such as El Niño or PDO.  The anomaly indicates change in the structure of the 
zooplankton community.  Importantly, because northern species of copepods are lipid rich, a 
high value of the northern copepod index is suggestive of good feeding conditions at the base of 
the food web and may help to predict changes in fish populations (Beamish and Mahnken 2001). 

Over the last 5 years (2005–2009), the northern copepod anomaly has followed an 
increasing trend (Figure 25), although the 5-year mean is within 1 SD of the long-term mean 
for the time series.  This increasing trend suggests the increasing prevalence of cold water 
copepods in the system.  This increase may be temporary, however, as the overall time series 
suggests long-term cycling. 

Several long-term zooplankton monitoring programs, representing seven subregions 
spanning the entire California Current system from Baja California to Vancouver Island, now 
provide zooplankton time series of various lengths from 1969 to the present.  Although 
differences in processing and sampling zooplankton time series introduce a variety of biases that 
often prevent comparisons between data sets, many major questions can still be answered, 
because an individual data set can be presented and analyzed as a time series of log-scale 
anomalies relative to the local long-term average seasonal climatology.  Anomalies are primarily 
used to separate interannual variability from the often large annual seasonal cycle of zooplankton 
stock size (Mackas and Beaugrand 2010). 

The specific species associated with these anomalies vary regionally, but can generally be 
classified as resident versus nonresident species.  Here we propose to combine these regional 
anomalies into a single index that can be used to represent coast-wide responses of zooplankton 
communities to regional climate signals.  This coast-wide zooplankton index indicator will 
combine regionally specific community composition anomalies into a single index using 
multivariate techniques (i.e., principal component analysis) in similar fashion to the calculation 
of regional climate indices, such as the MEI (Wolter and Timlin 1993).  This index can then be 
tested for use as a leading indicator of regional climate signals, such as ENSO or PDO, using 
existing time series from the last 20 years, during which time the California Current saw at least 
two major climate regime shifts. 

Indicator: Top predator biomass 

Data sources, data selection, and statistical procedures follow those for the estimation of 
groundfish numbers (see Evaluating Potential Indicators for the California Current: Groundfish  
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Figure 25.  The northern copepod anomaly off Oregon from 1996 to 2009.  Biomass values are mg carbon 

m–3 in log10.  Values above zero indicate a higher than normal abundance of northern copepod 
species.  Symbol in the upper right box indicates that the 5-year trend increased relative to 1 SD 
of the long-term mean.  Symbol in the lower right box indicates that the 5-year mean showed no 
change relative to the long-term mean.  (Data courtesy of Bill Peterson, NWFSC.) 

and Ecosystem Health subsection above and Appendix C).  While similar generalized additive 
models (GAMs) were used to produce annual means, top predator data were transformed 
(log(x+0.1)) prior to analysis. 

Top predator biomass (kg per km2) per trawl for groundfishes was calculated by 
summing the biomass of all groundfish species listed in FishBase.org with trophic levels of 4.0 
or higher (Table 12).  Top predator biomass declined from 2003 to 2009 (Figure 26) by more 
than 2 SD of the full NWFSC time series.  Over the last 5 years, biomass has continued to 
decline by more than 1 SD of the full NWFSC time series. 

Time constraints prevented us from collating and analyzing appropriate data for other 
apex predators.  Future efforts will expand this indicator so that it includes a breadth of top 
predator species. 

Key Attribute: Energetics and Material Flows 

Indicator: Nutrient levels 

In developed nearshore regions of the California Current, nutrient concentrations have 
been more or less continuously measured for decades in many rivers, estuaries, beaches, and 
other drinking water supplies.  In contrast for offshore regions, nutrient levels in the upper layers 
of the water column have generally been poorly characterized in space and time (Hill and 
Wheeler 2002).  Some exceptions to this pattern include intensive sampling at individual regions:  
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Table 12.  Species used in the estimation of top predator biomass.  Trophic level from FishBase.org. 

Common name Scientific name Trophic level 
Giant grenadier Albatrossia pectoralis 4.3 
Longnose lancetfish Alepisaurus ferox 4.1 
Thresher shark Alopias vulpinus 4.5 
Fangtooth Anoplogaster cornuta 4.0 
North Pacific daggertooth Anotopterus nikparini 4.5 
Black scabbardfish Aphanopus carbo 4.5 
Arrowtooth flounder Atheresthes stomias 4.3 
Javelin spookfish Bathylychnops exilis 4.1 
Deepsea skate Bathyraja abyssicola 4.0 
Aleutian skate B. aleutica 4.1 
White skate B. spinosissima 4.0 
Roughtail skate B. trachura 4.0 
Northern pearleye Benthalbella dentata 4.5 
Pacific pomfret Brama japonica 4.4 
Manefish Caristius macropus 4.2 
Can-opener smoothdream Chaenophryne longiceps 4.1 
Pacific viperfish Chauliodus macouni 4.1 
Black swallower Chiasmodon niger 4.2 
Spotted cusk-eel Chilara taylori 4.1 
Filamented grenadier Coryphaenoides filifer 4.5 
Triplewart sea devil Cryptopsaras couesii 4.5 
Petrale sole Eopsetta jordani 4.1 
Pacific hagfish Eptatretus stoutii 4.2 
Umbrellamouth gulper Eurypharynx pelecanoides 4.1 
Pacific cod Gadus macrocephalus 4.0 
Soupfin shark Galeorhinus galeus 4.2 
Whipnose Gigantactis vanhoeffeni 4.5 
Sixgill shark Hexanchus griseus 4.3 
Pacific halibut Hippoglossus stenolepis 4.1 
Ragfish Icosteus aenigmaticus 4.5 
Smooth stargazer Kathetostoma averruncus 4.3 
Pacific lamprey Lampetra tridentata 4.5 
Pacific scabbardfish Lepidopus fitchi 4.1 
Slender barracudina Lestidiops ringens 4.1 
Shortfin eelpout Lycodes brevipes 4.0 
Duckbill barracudina Magnisudis atlantica 4.1 
Softhead grenadier Malacocephalus laevis 4.2 
Common blackdevil Melanocetus johnsonii 4.1 
Pacific hake Merluccius productus 4.3 
Ocean sunfish Mola mola 4.0 
Sailfin sculpin Nautichthys oculofasciatus 4.1 
Glowingfish Neoscopelus macrolepidotus 4.2 
California grenadier Nezumia stelgidolepis 4.4 
Pink salmon Oncorhynchus gorbuscha 4.2 
Coho salmon O. kisutch 4.2 
Chinook salmon O. tshawytscha 4.4 
[No common name] Oneirodes thompsoni 4.2 
Lingcod Ophiodon elongatus 4.3 
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Table 12 continued.  Species used in the estimation of top predator biomass.  Trophic level from 
FishBase.org. 

Common name Scientific name Trophic level 
California halibut Paralichthys californicus 4.5 
Pacific pompano Peprilus simillimus 4.1 
[No common name] Photonectes margarita 4.0 
Plainfin midshipman Porichthys notatus 4.0 
Blue shark Prionace glauca 4.2 
Pacific sand sole Psettichthys melanostictus 4.1 
Brown rockfish Sebastes auriculatus 4.0 
Copper rockfish S. caurinus 4.1 
Yellowtail rockfish S. flavidus 4.1 
Black rockfish S. melanops 4.4 
Yelloweye rockfish S. ruberrimus 4.4 
Pacific sleeper shark Somniosus pacificus 4.3 
Spiny dogfish Squalus acanthias 4.3 
Pacific angel shark Squatina californica 4.1 
Blackbelly dragonfish Stomias atriventer 4.0 
California lizardfish Synodus lucioceps 4.5 
Longfin dragonfish Tactostoma macropus 4.2 
Pacific electric ray Torpedo californica 4.5 

 

the southern California Current via the CalCOFI program (Figure 27 through Figure 29, 
McClatchie et al. 2009) and portions of the northern California Current via GLOBEC cruises. 

Most nutrient levels (nitrate, phosphate, silicate) are characterized in the CalCOFI region 
from 1984 to present based on concentration anomalies in the mixed layer depth, calculated 
using a density criterion set either to 12 m or to the halfway point between the 2 sampling depths 
where the gradient first reaches values larger than 0.002 per million, whichever is larger.  Annual 
averages and the climatological mean are also graphed (McClatchie et al. 2009). 

Preliminary comparisons are shown between existing nearshore (e.g., Washington State’s 
ORHAB program, Monterey Bay National Marine Sanctuary Program) and offshore sampling 
programs by presenting data on seasonal averages (January-March = Win; April-June = Spr; 
July-September = Sum; October-December = Fall) of three nutrient levels (nitrate, phosphate, 
silicate) in the surface 5 m of the water column. 

Future iterations of this indicator will seek to standardize these values using 
concentration anomalies in the mixing layer relative to annual and climatological means for each 
region. 

Indicator: Chlorophyll a 

High values of chl a levels indicate increased abundance of primary producers at the 
water surface.  Satellite chl a values since 2002 were low in 2005 at locations B and C and in 
2009 at locations A and B.  In winter 2010, they were above 1 SD for all three locations (Figure 
30).  In the summers of 2003 and 2004, there were peaks at locations B and C, respectively.   
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Figure 26.  Top predator biomass.  Closed circles show results for the NWFSC trawl survey (data 

courtesy of Beth Horness, NWFSC).  Mean and SD are the mean and standard deviation of the 
NWFSC time series, Diff.trend is the absolute change in the predicted trend over 5 years.  The 
solid line is the mean for the NWFSC data.  Dotted lines are ±1 SD.  The trend line (thick black) 
is the 5-year trend.  Symbol in the upper right indicates that the 5-year trend decreased relative to 
1 SD of NWFSC data.  Data were log(x+0.1) transformed prior to analysis and back-transformed 
for presentation.  Data are the year effect from the GAM model and not absolute estimates of 
abundance. 

Chl a values at all three locations were low in 2010 and showed a decline over the past 5 years at 
locations B and C.  Spatial patterns show chl a greater near the coast particularly in estuaries 
such as San Francisco Bay, Puget Sound, and the Columbia River mouth.  Overall chl a values 
were greater in summer than winter. 

In the past several years, surface chlorophyll concentrations in Monterey Bay have been 
anomalously high (Kahru and Mitchell 2008, Kahru et al. 2009), consistent with the PDO shift in 
late 1998 and subsequent cooler state of the CCLME (Peterson and Schwing 2003, Chavez et al. 
2003).  Surface chlorophyll concentrations on the Oregon continental shelf have also been high 
in recent years, with summer averages nearly double values from 1997 to 2000 (Figure 30). 

EBM Component: Forage Fish 

This EBM component will be developed for the 2011 report.  We have included existing 
data on trends below as a precursor to more thorough treatment in FY2011. 

Most mesopelagic fishes decreased in abundance during cool phases of the PDO and 
increased during warm phases from CalCOFI data up to 2002 (Hsieh et al. 2005, 2009).  Because 
these species are not commercially fished and are highly linked to primary productivity, they can 
serve as a potential proxy for tracking changes in environmental forcing that could cascade 
through the pelagic food web.  Market squid in the southern ecoregion were below normal in  
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Figure 27.  Mean nitrate (NO3) concentrations (µmol/L) by season (1 = Win = Jan–Mar; 2 = Spr = Apr–

Jun; 3 = Sum = Jul–Sep; 4 = Fall = Oct–Dec), from 1984 to 2009 at depths less than 6 m.  Long-
term mean indicated by the thick horizontal line.  Geographic range encompasses station grid 
66.7 (CalCOFI north) through grid 136.7 (IMECOCAL–Baja California).  Data accessible in the 
CCE LTER data repository supported by the Division of Ocean Sciences, NSF Grant OCE-
0417616.  Data set 82: Conductivity temperature depth bottle data–Survey cruise data set 
(CalCOFI–SIO). 

2005 and 2006, as evidenced by both landing data and California sea lion (Zalophus 
californianus) diets (Figure 31). 

Of the key coastal species, northern anchovy is often characterized as being favored 
during cool periods and Pacific sardine during warm periods (Chavez et al. 2003).  However, it 
has been a cool period for the past 5 years and the abundance of sardine larvae has remained 
relatively high, but anchovy abundance has remained low.  Northern anchovy and Pacific sardine 
egg counts in spring (April) 2005 and 2006 were very low, especially in comparison with the 
2001–2003 period (Bograd et al. 2010).  The relative increases and decreases in anchovy versus 
sardine eggs between years may be attributed to temperature and upwelling (Lluch-Belda et al. 
1991). 

The composition of the forage fish community in 2005 and 2006 was most similar to that 
observed during the 1998 El Niño, with very low abundances of young-of-year groundfish and 
market squid, but with relatively high catch rates of anchovies and sardines.  However, since 
2006 the midwater trawl assemblage has trended back towards a species composition more 
characteristic of the cool, productive period of 2002.  The abundance of juvenile age-0 rockfish 
(Sebastes spp.) was exceptionally low in 2005.  Essentially, complete recruitment failure in the 
central ecoregion was observed (Bograd et al. 2010). 
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Figure 28.  Mean phosphate (PO4) concentrations (µmol/L) by season (1 = Win = Jan–Mar; 2 = Spr = 

Apr–Jun; 3 = Sum = Jul–Sep; 4 = Fall = Oct–Dec), from 1984 to 2009 at depths less than 6 m.  
Long-term mean indicated by a thick horizontal line.  Geographic range encompasses station grid 
66.7 (CalCOFI north) through grid 136.7 (IMECOCAL–Baja California).  Data accessible in the 
CCE LTER data repository supported by the Division of Ocean Sciences, NSF Grant OCE-
0417616.  Data set 82: Conductivity temperature depth bottle data–Survey cruise data set 
(CalCOFI–SIO). 

EBM Component: Vibrant Coastal Communities 

Work will commence on this EBM component in FY2011. 
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Figure 29.  Mean silicate (SiO3) concentrations (µmol/L) by season (1 = Win = Jan–Mar; 2 = Spr = Apr–

Jun; 3 = Sum = Jul–Sep; 4 = Fall = Oct–Dec), from 1983 to 2009 at depths less than 6 m.  Long-
term mean indicated by a thick horizontal line.  Geographic range encompasses station grid 66.7 
(CalCOFI north) through grid 136.7 (IMECOCAL–Baja California).  Data accessible in the CCE 
LTER data repository supported by the Division of Ocean Sciences, NSF Grant OCE-0417616.  
Data set 82: Conductivity temperature depth bottle data–Survey cruise data set (CalCOFI–SIO). 
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Figure 30.  Winter and summer spatial means of SeaWiFS chl a (1999–2008) and MODIS chl a time 

series from NDBC buoys.  The MODIS time series are area averages of 2 degree x 50 km boxes 
for north-south and east-west, respectively, and centered on locations A, B, and C.  All values on 
the figures have units of milligrams per cubic meter.  On the right side of each line chart, the 
equal sign indicates that the 2006–2010 mean is within the long-term SD; the down and 
horizontal arrows indicate whether the 2006–2010 trend is below or within 1 SD. 
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Figure 31.  Market squid indices from landings data (panel a) and California sea lion diets (panel b).  Note 

that the trend of increasing catch due to increasing fishing effort has been removed by quadratic 
regression.  Bars represent residuals after detrending.  (Catch data courtesy of Dale Sweetnam, 
California Department of Fish and Game, and marine mammal data courtesy of Mark Lowry, 
SWFSC.) 
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