Chapter 18
Tetraodontiformes
Chapter 18

Order: Tetraodontiformes (Plectognathi)

Number of suborders 2 (Triacanthoidei, Tetraodontoidei; monophyly of the order is accepted but relationships within the order are not settled; currently the trigger-fishes and filefishes are separated from the Tetraodontoidei as a third suborder, Balistoidei; e.g., Santini and Tyler 2003, Nelson 2006).

Number of families 9

Number of genera 101

Number of species approx. 357

GENERAL LIFE HISTORY

Distribution World-wide in temperate to tropical seas, some species in freshwater.

Relative abundance Relatively common; some species utilized in subsistence and small commercial fisheries, including the aquarium trade.

Adult habitat Benthic to epipelagic; most are tropical to warm temperate shorefishes, commonly associated with benthic habitats.

EARLY LIFE HISTORY

Mode of reproduction Oviparous (oviparity assumed for species with unknown mode), with planktonic or demersal eggs and planktonic larvae.

Knowledge of ELH Eggs and larvae known for many species representing all families.

ELH Characters:

Eggs: both planktonic and demersal eggs spherical, ca. 0.5–2.3 mm in diameter, with one to several oil globules (commonly > 1); demersal eggs adhesive.

Larvae: hatch at approx. 1–3 mm in relatively undeveloped (large yolk sac, unpigmented eyes, unformed mouth) to well developed state (little yolk, pigmented eyes, functional mouth); notochord flexes at approx. 2.5–6.5 mm, transformation at approx. 5–30 mm (commonly ≤ 10 mm); initially moderately slender and compressed becoming deeper-bodied with growth, to deep-bodied and broad throughout development; preanal length initially approx. 35–65% BL increasing to approx. 40–90%; eyes typically large; epidermis typically slightly to strongly inflated (the dermal sac); spines lacking on bones of head and pectoral girdle, but dermal spinules or bony plates form in some; 16–26 myomeres (commonly 18–22); pigmentation ranges from nearly absent to nearly complete, commonly present on head, gut, and dorsum of trunk.

Example species: Triacanthoidei: Triacanthus biaculeatus (Triacanthidae).

Tetraodontoidei (Balistoidei): Aluterus scriptus (Monacanthidae).

Tetraodontoidei (Tetraodontoidei): Sphoeroides lobatus (Tetraodontidae).

REFERENCES Aboussouan and Leis 1984, Fahay 2007b, Fujita 1988, Johnson and
Order: Tetradontiformes (Plectognathi)

Chapter 18

Tetraodontiformes/Triacanthoidei/Triacanthidae

Triacanthus
T. biaculeatus 4.3 mm
(Trnski and Leis 2000b)

Tetraodontiformes/Tetraodontoidei (Balistoidei)/Monacanthidae

Aluterus
A. scriptus 5.7 mm
(Watson 1996z)
Order: Tetraodontiformes (Plectognathi)

Tetraodontiformes/Tetraodontoidei (Tetraodontoidei)/Tetraodontidae

Sphoeroides
S. lobatus 5.2 mm
(Watson 1996aa)
Chapter 18

Order Tetraodontiformes (Plectognathi)

<table>
<thead>
<tr>
<th>Suborder</th>
<th>Tetraodontoidei (Superfamily Balistoidea)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>Balistidae (Triggerfishes)</td>
</tr>
<tr>
<td></td>
<td>Nb: some authors include Monacanthidae in this family.</td>
</tr>
<tr>
<td>Number of genera</td>
<td>11</td>
</tr>
<tr>
<td>Number of species</td>
<td>about 40</td>
</tr>
</tbody>
</table>

GENERAL LIFE HISTORY

Distribution
Marine, primarily tropical.

Relative abundance
Locally abundant. Of limited artisanal importance.

Adult habitat
Mostly on shallow reefs, but some semi-pelagic or oceanic. Medium-sized carnivores.

EARLY LIFE HISTORY

Mode of reproduction
Oviparous.

Knowledge of ELH
Eggs and larvae known for few species.

ELH Characters

Larvae: body initially slender and slightly compressed, but quickly becomes deep and robust before flexion. Gut deep and coiled. Preanal length 40–58% BL before flexion, 63–73% BL after flexion. 18–19 myomeres. Head moderate, becomes large with short snout and steep profile but snout lengthens. Mouth small and horizontal; teeth form just before flexion. By flexion, gill opening reduced to small pore at P1 fin base. No head spines, but what appear to be modified spinulose scales form an enlarged tuft on preopercle at about 1.5 mm BL. Tuft disappears at about time of flexion as spinule-like scales appear on head and body. Notochord flexion at 3.5–4.5 mm. First fin elements (D fin spines) form prior to flexion. D sp1 becomes robust, long and barbed by start of flexion. D and A rays begin to form just prior to flexion, and full complement of elements present in all fins by 6–7 mm. No P2 fin. Heavy pigment over head, nape, gut and operculum. Series of fine melanophores on ventral midline of tail, and usually on dorsal notochord tip; these disappear by end of flexion. Become juveniles at a small size (ca. 8–10 mm), but remain pelagic for extended periods.

Example taxon
Balistidae (unidentified).

Meristics (family):
REFERENCES

Order: Tetraodontiformes (Plectognathi)

Tetraodontiformes/Balistoidei/Balistidae
from: Leis and Rennis 2000p
Balistidae (unidentified)

3.0 mm

4.4 mm
Chapter 18

Order Tetraodontiformes (Plectognathi)

Suborder Tetraodontoidei (Superfamily Tetraodontoidea)

Family Tetraodontidae (Puffers)

Number of genera about 20
Number of species about 120

GENERAL LIFE HISTORY

Distribution Primarily marine, but some freshwater. World-wide tropical to temperate.

Relative abundance Locally abundant. Of commercial importance in Japan.

Adult habitat Variety of marine, estuarine and freshwater habitats: some epipelagic. Small to medium-sized carnivores.

EARLY LIFE HISTORY

Mode of reproduction Oviparous.

Knowledge of ELH Eggs and larvae known for few species.

ELH Characters Eggs: demersal, 0.5–1.3 mm.

Larvae: early preflexion larvae have moderate to deep, ovoid head and trunk and slender, tapered tail. By late preflexion stage, head and trunk more robust and larvae can inflate. Body wide, width remains less than depth. In preflexion larvae, head and trunk with wide subdermal space. The gut broad, deep and coiled. Preanal length 48–83% BL, and >75% BL following flexion. 17–24 myomeres. Head moderate to large, and ovoid to rotund. Mouth small and horizontal, beak-like teeth form prior to flexion. Gill opening a small exhalent pore at P1 fin base. No head spination. Notochord flexion at 3–5 mm. No spines in fins: P2 absent. D, A and PI rays begin to form just prior to flexion, and full complement of elements present in all fins by 5 mm. Spinule-like scales begin to form usually on belly as early as 3 mm: distribution, shape and persistence of dermal spinules species specific. Heavy pigment present over dorsal and dorsolateral surfaces spreads with development. Tetraodontids become juveniles at very small size (ca. 5–10 mm), but may remain pelagic for an extended period.

Example taxon: Tetraodontidae (unidentified).

Meristics (family): D: 8–18, A: 6–16, P1: 12–19, P2: absent, V:7–10+8–14=16–24, C: 5+6=11
REFERENCES

Order: Tetraodontiformes (Plectognathi)

Tetraodontiformes/Tetradontoidei/Tetraodontidae
from: Leis and Rennis 2000r
IDENTIFICATION OF EGGS AND LARVAE OF MARINE FISHES

edited by Arthur W. Kendall, Jr.

© 2011 National Museum of Nature and Science
All right reserved, but the rights to each figure belong to the person stated in the text.
No part of this book may be reproduced in any form or any other means
without the written permission of the publisher.

ISBN978-4-486-03758-3
First published 2011
Printed in Japan
Tokai University Press
3-10-35, Minamiyana, Hadano-shi, Kanagawa, 257-0003 Japan
Chapter 16: Perciformes: William Watson

Percoidei: Jeffrey M. Leis
- Lutjanidae: Lutjanus malabaricus, Paracaeos sp.
- Girellidae: Girella triscupidata

Labroidei: Jeffrey M. Leis
- Labridae: Achoerodus viridis, Julidin labrid, Xyrichthys sp.
- Pomacentridae: Pomacentrus amboinensis

Zoarcoidei: Ann C. Matarese
- Stichaeidae: Anoplarchus purpurescens

Notothenioidei: William Watson

Trachinoidei: William Watson
- Chiasmodontidae: Chiasmodon subniger
- Ammodytiidae: Ammodytoides gilli

Blenioidei: William Watson
- Clinidae: Heterostichus rostratus
- Blenniidae: Hypsoblennius jenkinsi

Gobiesocioidei: William Watson
- Gobiesocidae: Gobiesox rhesodon

Callionymioidei: William Watson
- Callionymidae: Synchiropus atrilabiatns

Gobiioidei: William Watson
- Gobiidae: Clevelandia ios
- Microdesmidae: Microdesmus sp.
- Schindleriidae: Schindleria praematura

Acanthuroidei: Jeffrey M. Leis
- Acanthuridae: Acanthurns sp.

Scombroidei: Jeffrey M. Leis
- Sphyraeniidae: Sphyraena sp.
- Scombridae: Scomber japonicus

Stromateoides: Jeffrey M. Leis
- Nomeidae: Psenes sio
- Tetragonuridae: Tetragonus cuvieri

Chapter 17: Pleuronectiformes: Ann C. Matarese and Morgan S. Busby

Psettodei
- Psettididae: Psettodes erumei

Pleuronectoidae
- Bothidae: Bothus leopardinus
- Paralichthyidae: Citharichthys stigmatus, Syacium ovale
- Pleuronectidae: Glyptocephalus zachirus, Microstomus pacificus
- Cynoglossidae: Symphurus atricaudus

Chapter 18: Tetraodontiformes: William Watson

Balistidae: unidentified: Jeffrey M. Leis
- Tetraodontidae: unidentified: Jeffrey M. Leis

References

Index
Contributors

David A. Ambrose
2333 Shadyridge Ave., Escondido, CA 92029, USA

Deborah M. Blood
NOAA, NMFS, AFSC, 7600 Sand Point Way, NE Seattle, WA 98115, USA

Morgan S. Busby
NOAA, NMFS, AFSC, 7600 Sand Point Way, NE Seattle, WA 98115, USA

Sharon R. Charter
NOAA, NMFS, SWFSC, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA

Denice Drass
NMFS MS Laboratory, 3209 Frederic Street, Pascagoula, MS 39567, USA

Michael P. Fahay
241 Sabine Road, West Booth Bay, ME 04530-6711, USA

Arthur W. Kendall, Jr.
635 Wanapum Drive, La Conner, WA 98257, USA

Jeffrey M. Leis
Australian Museum, 6 College Street, Sydney, NSW 2010, Australia

Ann C. Matarese
NOAA, NMFS, AFSC, 7600 Sand Point Way, NE Seattle, WA 98115, USA

H. Geoffrey Moser
PO Box 466, Bozeman, MT 59771, USA

William Watson
NOAA, NMFS, SWFSC, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA