
SC/64/AWMP4 

 

1 
 

Update on the use of a simulation-based approach to evaluate plausible levels of recruitment into the 
Pacific Coast Feeding Group of gray whales 
 
Lang, A.R., and Martien, K. K. 
Protected Resources Division, Southwest Fisheries Science Center, La Jolla, CA 92037 
 
ABSTRACT 
 
Previous genetic comparisons of the Pacific Coast Feeding Group (PCFG) of gray whales with whales feeding 
north of the Aleutians have shown significant levels of mitochondrial differentiation. The magnitude of the 
differentiation, along with the relatively high levels of genetic diversity identified within the PCFG, have 
raised questions about how much immigration into the group could occur before the signal of mtDNA 
differentiation is erased. Here we use a simulation-based approach to evaluate the range of plausible levels of 
immigration into the PCFG that could be occurring. The simulations incorporate annual immigration ranging 
from between 0 and 16 animals per year (once the larger ENP population reaches K), and simulations both 
with and without a pulse of +20 immigrants over two years are included.  Results suggest that under the 
scenarios tested, current immigration into the PCFG of one migrant per year or less would produce levels of 
genetic diversity and differentiation that are inconsistent with the empirical data. The simulations were less 
informative with regard to placing an upper limit on the number of animals per year which could be 
immigrating into the PCFG, although comparison of FST and χ2 (per degree of freedom) values between the 
simulated and empirical data suggests that immigration higher than 8 animals per year is unlikely. 
Comparisons between the observed and simulated values for the number of haplotypes, FST, and χ2 (per df), 
which were the most informative measures, suggest that immigration of approximately 4 animals per year is 
most plausible. 

INTRODUCTION 

Genetic comparisons of samples collected from gray whales considered to be part of the Pacific Coast Feeding 
Group (PCFG) with those from animals that feed north of the Aleutians have revealed small but significant 
levels of mtDNA differentiation but no nuclear differentiation (Lang et al. 2011). In addition, a relatively large 
number of mtDNA haplotypes were identified within the PCFG (n=23 haplotypes, Lang et al. 2011), which is 
estimated to contain ~200 animals (IWC 2011). Analysis of photo-identification data indicates that on 
average, 10 animals per year were recruited1 into the PCFG between 2004 and 2008, with larger numbers of 
recruits identified between 2000 and 2002 (IWC 2011). These recruits could be internal (i.e., calves born to 
PCFG mothers) or external (animals that previously fed north of the Aleutians and subsequently immigrated 
into the PCFG). An average of three calves per year were identified in the PCFG between 1998 and 2008 
(Calambokidis et al. 2010), and it is presumed that at least half of the calves born each year may not have 
been identified as such (IWC 2011). Based on those assumptions, an estimated four animals per year may 
have recruited into the PCFG from northern feeding area(s) between 2004 and 2008, and a pulse of higher 
immigration may have occurred between 1999 and 2002, potentially in response to the increase in gray 
whale mortality that occurred in 1999 and 2000. 

The results of these genetic and photo-id studies of the PCFG have raised questions about how much external 
recruitment into the PCFG could occur while still maintaining the observed level of mtDNA differentiation 
between the PCFG and animals feeding north of the Aleutians. The use of a simulation-based approach has the 
potential to provide information relevant to this question. As part of a previous IWC exercise (the Testing of 
Spatial Structure Methods, or TOSSM, project), simulated genetic datasets representing different population 
structure archetypes were created for performance testing of different analytical methods (Martien et al. 
2009). The demographic parameters underlying the dataset generation model were based on the vital rates of 

                                                            
1 Here a ‘recruit’ is defined as an individual first photographed in the PCFG seasonal range (within the area 
spanning 41-52°N and between June 1 and November 30) in a given year and resighted within the seasonal 
PCFG range in at least one subsequent year. 
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eastern gray whales (Martien et al. 2004, Martien 2006).  In discussions with the IWC Stock Definition 
subcommittee, it was agreed that the TOSSM dataset generation model could be useful in creating simulated 
datasets that would allow the plausibility of different hypotheses (e.g., different immigration rates into the 
PCFG) to be evaluated.  

METHODS 

Rmetasim 

Simulated datasets were produced using the rmetasim package (version 1.1.05, Strand 2002) as run in the R 
statistical environment (R 2.14.1). Rmetasim performs individual-based population genetic simulations 
utilizing stage-based matrix population models. The transition probabilities in the matrices are used to 
randomly assign births, stage transitions, and deaths of individuals over time.  Density dependent growth is 
implemented by the linear interpolation between matrices representing survival and reproduction rates at 
carrying capacity (K) and at zero population density (ZPD). A pre-birth pulse model is used, such that at the 
end of each simulation year, the youngest animals in the population are one year old.  

Stage-based matrices 

As previously mentioned, vital rate estimates for eastern Pacific gray whales (as described in Martien et al. 
2004, Martien 2006) were used to parameterize stage-based matrices for the TOSSM exercise.  Since the 
construction of these matrices, additional information has become available on the life history of gray whales. 
This new information was utilized to update the stage-based matrices from TOSSM, and when possible the 
vital rates used in constructing the new matrices were chosen to be the same as those utilized in the IWC’s 
Implementation Review of gray whales. The following changes were made:  

1)  Adult survival rate was increased to the median estimate from Punt & Wade 2010 (SA=0.982) 

2) A separate term for calf survival rate (set to Sc=0.732, the median estimate in Punt & Wade 2010) 

was utilized. In the previous matrices, calf survival was the same as juvenile survival. 

3) The median estimate from Punt & Wade 2010 was utilized for the rate of increase at ZPD (λ =1.063) 

4) The age of first reproduction (AFR) was increased to 7 years at ZPD based on the Bradford et al. 2010 

review. 

5) A third juvenile stage was added to provide better control of AFR.  

In addition, three identical adult stages for each sex were included in the new matrices.  In contrast, the 
matrices used in the TOSSM project included a single adult male stage and separate fertile and lactating 
stages for adult females.  This change was implemented for two reasons. First, it allowed for better control of 
generation time and greatly reduced the proportion of individuals in the simulations that lived to unrealistic 
ages under the increased adult survival rate. Secondly, it reduced the number of multiple births by the same 
female in a given year. In rmetasim, the fertility term represents the mean number of calves produced per 
female based on a Poisson distribution (Strand 2002). This results in some females producing more than one 
calf per year. Eliminating the separate fertile and lactating stages allowed us to reduce the fertility term (since 
it was applied to all adult females, not just a subset in the lactating stage), thereby reducing the number of 
multiple births (Table 1).  However, this change also eliminated the minimum two-year calving interval that 
had been enforced in the TOSSM matrices. As such, under the new matrices some females in the simulation 
will give birth in consecutive years (Table 2).  

Given the number of changes implemented in the new matrices, we ran the simulations using both the 
updated nine-stage matrices as well as the original five-stage matrices (as described in Martien 2006) utilized 
in the TOSSM exercise. The vital rates used to construct the original matrices and those utilized in the 
updated 9-stage matrices are detailed in Table 3.  The parameter for juvenile survival rate was not derived 
from the literature but was calculated from the matrices to produce the desired value of lambda. The 
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Maximum Sustainable Yield Rate (MSYR) calculated from the 9-stage matrices is ~3.3%, while MSYR for the 
5-stage TOSSM matrices is ~3.6%. 

These vital rates were used to construct stage-based matrices representing the demography of the population 
near carrying capacity (K) and near zero population density (ZPD). Transition probabilities were calculated 
according to Caswell (2001) and the resulting matrices are shown in Table 4. 

Population Trajectories 

Dataset generation followed the steps outlined in Martien 2006, with the exception that coalescent datasets 
were generated using FastSimcoal (Excoffier and Foll, 2011) rather than SimCoal 2.1.2 (Laval and Excoffier 
2004) to establish the effective size (Ne).  In all scenarios, a single population was simulated in rmetasim for 
4000 years to provide datasets representing the equilibrium population. This time period was shown to be 
sufficient for reaching equilibrium in a similar exercise for bowhead whales (Archer et al. 2010), that have a 
markedly longer generation time. 

The mutation parameter incorporated in the simulations was adjusted to produce genetic diversity levels (as 
measured by the number of haplotypes and the haplotypic diversity) that are similar to the values observed 
for the “North” strata in the Lang et al. 2011 study. A range of mutation parameters were explored before 
setting the mutation parameter to 3.8 x 10-3 per generation, which produced measures of genetic diversity 
that were the most consistent with the observed data.  

Carrying capacity (K) for the larger ENP population of gray whales was set to 20,000 animals, similar to the 
most recent abundance estimate (19,126 animals in 2006/2007; Laake et al. 2009). Carrying capacity for the 
PCFG was set to 200 in accordance with the estimated abundance of 194 animals in 2008 (Annex F, IWC 
2011). 

For all population trajectories, depletion due to commercial whaling was simulated as having occurred 
between 1846 and 1930. Attempts were made to utilize the catch history (Annex E, IWC 2011) with a 
multiplier to produce the desired level of depletion in 1930 (10% of K). However, when this modification was 
incorporated it resulted in a high number of simulation runs that failed due to the simulated population(s) 
going extinct. As such, the depletion per year was set to a constant proportion of K, such that the population 
was depleted by 7.1% of K in each year for the duration of the simulated whaling period. This level of 
depletion allowed the population to reach the desired level (0.10 of K, or ~2000 animals) by 1930. Examples 
of the population trajectories produced are shown in Figure 5. 

Given that little is known about the origin of the PCFG, two different population histories were simulated. The 
first scenario (“post-whaling split”) assumes that the PCFG split from the larger ENP population following 
depletion. After reaching equilibrium a single population was projected forward through the 1846-1930 
whaling period with depletion occurring as described above.  In 1930, 20 animals (10% of K PCFG) were split 
from the larger population to represent the PCFG. The two populations were then allowed to increase until 
reaching K. Rmetasim employs a “hard ceiling” to restrict population growth to K, such that individuals are 
killed off randomly after reaching levels >10% higher than K. 

The second scenario (“pre-whaling split”) assumes that the PCFG split from the larger ENP gray whale 
population prior to the depletion of gray whales due to commercial whaling. In this scenario, the equilibrium 
population was split into two feeding groups to represent the northern feeding ground (KENP=20,000) and the 
PCFG (KPCFG = 200). The split was presumed to occur at the start of the Little Ice Age (considered here to be at 
1540), a period in which it seems plausible that ice conditions would have been favorable for gray whales to 
begin using more southern feeding grounds.  Both populations were projected forward until 1846, when the 
depletion due to commercial whaling was simulated as described above. After reaching 1930, the simulated 
depletion ceased and the two populations were allowed to grow until reaching K.  
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Immigration rates ranging from 0 to 0.0008 were simulated.  These migration rates correspond to the 
immigration of between 0 and 16 animals per year into the PCFG from the larger ENP population once it has 
reached K (Figure 6). In addition, each population history and migration rate combination was also simulated 
with a migration “pulse” of 20 individuals over two years.  This pulse is reflected in the abundance of the 
PCFG in 2000 and in 2001. Examples of abundance trajectories for the PCFG under the different immigration 
scenarios are shown in Figure 7.  

Additional simulations were performed in which the value of KPCFG was increased from 200 to between 500 
and 5000. These simulations incorporated a post-whaling split of the PCFG from the larger ENP, with the 
pulse migration of +20 animals over two years but no annual immigration into the PCFG. As in the “post-
whaling split” scenarios described above, the split of the PCFG from the larger ENP was modeled such that the 
number of animals colonizing the PCFG in 1930 was 10% of K. 

A final set of simulations were performed that incorporated a more recent split (between 1940 and 1990) of 
the PCFG from the larger ENP population. The number of animals splitting off to form the PCFG in a given year 
was derived by taking an average (over ten replicates) of the simulated abundance of the PCFG in each year 
when the abundance trajectories were modeled under the scenario of a post-whaling split of the PCFG in 
1930 with no annual immigration. 

A list of scenarios that have been simulated to date is included in Table 7. Of note, the simulations 
incorporating a pre-whaling split of the PCFG from the larger ENP are in progress and have not yet been 
completed. 

Sampling and Genetic Analyses: 

To generate the simulated dataset, the number of simulated animals sampled per year was set to match the 
number of animals sampled per year and per stratum in the Lang et al. (2011) study (Table 8). In the 
empirical study, some animals were sampled multiple times, and only one sample per individual was retained 
for the data analysis. For the simulated sampling, the year of sampling for such individuals was assigned as 
the first year that the animal was sampled.  A total of 103 samples were collected from simulated ENP 
individuals and 71 samples were collected from simulated PCFG individuals.  

These sampled individuals were used to generate summary statistics for each group. Genetic diversity was 
characterized by the number of mtDNA haplotypes, the mtDNA haplotype diversity, and the mtDNA 
nucleotide diversity. Differentiation between the two simulated groups was measured using FST, χ2 (per 
degree of freedom), and ɸST. The summary statistics generated from the simulated datasets were then 
compared to the observed summary statistics generated for the PCFG and the North strata in Lang et al. 2011. 

To further evaluate how well the shape of the haplotype frequency distribution for the simulated ENP 
population matched the shape of the distribution for the North stratum in the empirical data, a χ2 test was 
used to compare the two haplotype frequency distributions, and the number of significant tests (p<0.05) was 
calculated. In addition, the frequency of the most common haplotype in each replicate simulation was 
calculated and compared to the frequency of the most common haplotype in the empirical data for the North 
stratum. Given that the mtDNA summary statistics produced for the simulated ENP population under all 
scenarios was similar, these tests were only conducted using the data for the simulated ENP population 
produced under the model with a post-whaling split with pulse migration but no annual immigration. 

In addition to showing the proportion of simulations that had higher and lower values for each statistic than 
the values generated from the empirical data, we used interpolation to calculate the “crossover point” at 
which the 50% probability (median) was reached (i.e. the point at which the proportion of simulated runs 
had values higher than the observed reached 50%). For the number of haplotypes, the crossover point was 
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calculated as the point at which the lines representing the proportion greater than and the proportion less 
than crossed (as for the other statistics), but because some simulation replicates had values equal to (rather 
than less than or greater than) the observed value, this point was slightly lower than the 50% probability. 

RESULTS 

Although the goal is to produce 500 replicates of each scenario, currently only 100 replicates of each scenario 

are complete and are utilized in the results shown here.   

Comparison of simulated and observed data for ENP 

Table 9 includes a summary of the number of haplotypes, haplotypic diversity and nucleotide diversity for the 

simulated ENP population for the model incorporating the 9-stage matrices with a post-whaling split and 

pulse immigration. Results were similar under all scenarios tested (data not shown). Overall, median values 

for both the haplotypic diversity and the number of haplotypes were similar among the simulated and 

empirical datasets. The haplotypic diversity values generated in the simulated data were slightly lower than 

that in the observed data, with median values for the simulated data ranging from 0.948 to 0.950 (as 

compared to the observed haplotypic diversity of 0.952) and with 52-64% of replicates under the different 

immigration scenarios having lower haplotypic diversity than found in the empirical data. In contrast, the 

median number of haplotypes generated in the simulated datasets (33 to 34 haplotypes) was slightly higher 

than that found in the observed data (32 haplotypes). Between 62 and 75% of replicates for the different 

immigration scenarios generated values higher than the number identified in the empirical dataset. Although 

the nucleotide diversity calculated from the empirical data fell within the 90% range of the simulated values, 

nucleotide diversity in the simulated data was higher than that found in the observed data. 

To evaluate whether the shape of our simulated haplotype distributions matched the shape of the observed 

distribution, we used a χ2 test to compare the observed (North stratum) versus the simulated haplotype 

frequency distributions for the ENP population. The χ2 test evaluates whether the haplotype distributions 

representing the empirical and simulated data could have been generated by random sampling of a single 

population. The χ2 test is particularly sensitive to the frequencies of the most common haplotypes, as those 

haplotypes are the most likely to be represented in the random draws that represent immigration events. In 

our comparison, 12% of tests showed significant (p<0.05) differences (Figure 10), suggesting that the shape 

of the observed and simulated distributions were similar in most cases. We also compared the frequency of 

the most common haplotype in the empirical data with the frequency of the most common haplotype in the 

simulations. We found that the frequency of the most common haplotype was higher than that found in the 

empirical data for 47% of the simulation replicates. This finding is consistent with the expectation that if two 

samples are drawn from the same distribution, the frequency of most common haplotype would be expected 

to be greater in one sample than the other 50% of the time. 

Comparison of simulated and observed data for the PCFG 

Figure 11 shows a graphical representation of the proportion of simulated values for each statistic that are 

lower (shown in black) or higher (shown in gray) than the observed value generated from the empirical data 

for one of the scenarios tested (post-whaling split with pulse immigration, nine-stage matrices). Summaries 

of the number of mtDNA haplotypes (Table 12), mtDNA haplotype diversity (Table 13), mtDNA nucleotide 

diversity (Table 14), FST (Table 15), ɸST (Table 16), and χ2/df (Table 17) produced by the simulations under 

all completed scenarios are shown below.   
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With regard to comparisons between the observed and simulated data, the statistics based on haplotype 

frequencies (haplotypic diversity, FST, and χ2/df) and haplotype numbers were the most informative. For all 

four of these statistics, scenarios based on annual immigration of one animal or less per year (at K) produced 

values that were inconsistent with the empirical data. The comparisons were less informative with regard to 

the highest level of immigration that could be occurring, although comparison of FST and χ2/df values 

suggested that levels of immigration including > 8 animals/year (along with the pulse immigration) would 

produce values inconsistent with those produced by the empirical data. 

Similar to the pattern seen in comparison of the observed and simulated data for the larger ENP population, 

the nucleotide diversity identified among the simulated datasets was higher than that seen in the empirical 

data.  In the ɸST comparisons, the value generated in the empirical comparison was more consistent with the 

lower range of values for annual immigration and indicated that more than 8 immigrants per year into the 

PCFG would produce values of ɸST lower than that observed. Caution should be applied when interpreting 

this pattern, however, given the lower nucleotide diversities identified in the observed data when compared 

to the simulated datasets.  

Table 18 shows the results of simulations evaluating scenarios in which the PCFG splits from the larger ENP 
population between 1940 and 1990. The results shown suggest that for no annual immigration into the PCFG 
to be plausible, the PCFG would have had to split from the larger population after 1950.  

Table 19 shows the results of simulations evaluating scenarios in which the carrying capacity for the PCFG 
was set to between 500 and 5000. The results indicate that the carrying capacity for the PCFG would need to 
be higher than 500 animals for the simulated results to be consistent with the empirical data under a scenario 
of no annual immigration. Examples of the abundance trajectory of the PCFG for the K values tested are 
shown in Table 20. For all K values simulated, the abundance of the PCFG was close to carrying capacity by 
2010 (Table 21). 

DISCUSSION: 

Comparison of the simulated and empirical datasets for the larger ENP population suggests that the 

simulations represent the empirical data reasonably well with regard to the number of haplotypes and their 

distribution. Although the simulations predict that we would find slightly higher number of haplotypes and a 

slightly lower haplotypic diversity than is present in the empirical data, the differences are small and the χ2 

test suggests that the two samples would be interpreted as being drawn from the same population in the 

majority (88%) of cases. The results of these comparisons suggest that similar frequency-based comparisons 

of the simulated and empirical data representing the PCFG should be informative.  

The level of nucleotide diversity in the simulated data representing the larger ENP population is higher than 

that found in the empirical data, indicating that there are some aspects of the population’s history that are not 

being captured by the simulations. It is likely that the gray whales in the North Pacific have experienced 

numerous fluctuations in abundance due to changing ice conditions in the past, and historic K may have been 

substantially larger than we have simulated here (e.g., Alter et al. 2007).  Our simulations incorporate only a 

simplified version of the recent history of gray whales, and our results suggest that the statistics relying on 

nucleotide differences (e.g., nucleotide diversity and ɸST) may be more sensitive to violations of our 

assumptions about past (pre-commercial whaling) population size and equilibrium. As such, the results 

derived from the comparisons of nucleotide diversity and ɸST warrant further investigation and should be 

interpreted with caution.  
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The comparison of frequency-based statistics between the simulated and empirical datasets representing the 

PCFG suggests that annual immigration into the PCFG is likely to be higher than 1 immigrant per year under 

the scenarios tested.  The simulations were less informative with regard to the upper bound on annual 

immigration that could be occurring. Although the FST and χ2/df comparisons indicated that immigration of 

>8 animals/year would be inconsistent with the empirical data, the proportion of simulations with higher 

than the observed values for the number of haplotypes and the haplotypic diversity never exceeded 84% and 

63%, respectively. For all four statistics, the proportion of simulations with higher (for the number of 

haplotypes and haplotypic diversity) or lower (for FST and χ2/df) values than the observed appears to level off 

at the higher (8 -10 or more per year) levels of immigration. This pattern is particularly evident in the 

comparisons utilizing haplotypic diversity, where the proportion of simulations with higher or lower values 

than the observed levels off at ~50% for immigration of 8 or more animals per year. Haplotypic diversity is 

calculated based on the sum of squared allele frequencies. Given that relationship, as the number of 

haplotypes in a population increases, the addition of another haplotype, particularly one found in low 

frequencies as would be expected to be brought in by an immigrant, has little impact on diversity.  As such, 

this statistic, and to a lesser extent the others, appear to have limited power to differentiate between the 

higher levels of immigration. 

Although these statistics were limited in their ability to distinguish an absolute upper bound on how much 
immigration could be occurring, the calculation of the number of immigrants per year which corresponds to 
the “crossing point” provides some information on what the most plausible values of immigration could be 
(Table 22). The estimated number of migrants ranged from ~2 to 8 for the scenarios with pulse immigration 
under the updated matrices. For the reasons discussed above, the calculations based on ɸST and haplotypic 
diversity may not provide the best estimates. Comparisons between the observed and simulated values for 
the number of haplotypes, FST, and χ2/df, suggest that immigration of approximately 4 animals per year is 
most plausible. If the current abundance of the PCFG is approximately 200 animals, this represents 
immigration of ~ 2% per year. Of note, this estimate does not include the +20 animals which were simulated 
to immigrate into the PCFG in 2000 and 2001.   

Although the simulation results could be sensitive to other parameters incorporated in the models, a limited 
evaluation of the effects of increased carrying capacity for the PCFG or a more recent founding time was 
conducted.  These simulations suggested that to obtain the empirical results presented in Lang et al. 2011 
under a scenario of no annual immigration, the abundance of the PCFG would have to be larger (>500 
animals) than currently estimated. Gray whales have been observed feeding off of Kodiak Island, Alaska since 
at least 1999, with ~350-400 individuals counted during a single day in July 2000 (Moore et al. 2007). 
Approximately 20% of the animals photographically identified in this area between 2002 and 2005 are 
known to be animals that have also been photographed in the Pacific Northwest from northern California to 
southeast Alaska (Gosho et al. 2011).  However, the median “crossing point” calculated from these 
comparisons suggest that values of K between 2000 (based on FST) and 3000 (based on the number of 
haplotypes) animals produce values that are most consistent with the empirical data, indicating that 
additional explanation may be needed.  

The simulations exploring more recent founding times suggest that under a scenario with no annual 
immigration, the PCFG would have to have been founded after 1950, and more plausibly between the mid-
1960s to mid-1970s, to produce simulated results that are consistent with the empirical data. Small numbers 
of gray whales have been sighted within the seasonal range of the PCFG since at least 1926 (Howell & Huey 
1930, Gilmore 1960, Pike and MacAskie 1969, additional references in Rice & Wolman 1971), but photo-
identification studies did not start until the 1970s, when the repeated return of individuals to the area was 
first documented (Hatler & Darling 1974, Darling 1984).  Our simulations model an instantaneous 
colonization of the PCFG, such that for the scenarios modeling colonization in 1960 or later at least 60 whales 
become part of the PCFG in a given year. This aspect of our simulations is clearly an oversimplification. Given 
both the limited information available on use of the PCFG seasonal range prior to the 1970s and the 
limitations of our model, it is difficult to evaluate how the simulation results fit in with past records.  
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The simulations incorporating a pre-whaling split of the PCFG from the larger ENP population are in progress 

and are expected to be completed by the 2012 SC meeting.  Future work will also include integrating the 

genetic data representing ENP gray whales in LeDuc et al. 2002 and Lang 2010 with the data represented in 

Lang et al. 2011 to ensure that the diversity values utilized here are as representative as possible of the larger 

ENP population.  Simulations will also be performed to explore the effect of incorporating lower MSYR rates 

for the PCFG into the life history matrices underlying the models.  
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Table 1. The proportion of birth events in the simulated data that resulted in multiple offspring for the same 

female in a given year.  

  
5-stage TOSSM 

matrices 
9-stage 

matrices 

Proportion of single offspring births: 64% 92% 
Proportion of multiple offspring 
births: 36% 8% 

Range of multiple offspring births: 2-7 2-3 

 

Table 2. Calving intervals in the simulated datasets.  

 Measure 

5-stage 
TOSSM  
matrices 

9-stage 
matrices 

Median 3 2 

Mean 5.1 3.2 

Variance 27.08 16.50 

stdev 5.20 4.06 

Min 2 1 

Max 35 38 

 

Table 3. Vital rates for gray whales. Generation time shown here is calculated based on a maximum age of 40 

years (as in previous work). 

 

  5-stage TOSSM matrices 9-stage matrices 

Vital Rate At K Near ZPD At K Near ZPD 

Juvenile survival 0.925 0.94 0.905 0.935 

Adult female survival 0.946 0.946 0.982 0.982 

Adult male survival 0.954 0.954 0.982 0.982 

Calf survival 0.925 0.94 0.732 0.732 

Age of first reproduction 10 5 10 7 

Rate of increase (λ) 1.003 1.072 1.000 1.064 

Generation Time* 19.5 16.9 21.10 20.60 
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Table 4. The updated stage-based matrices for use at a) zero population density and b) carrying capacity are 

shown below.  

a) Nine-stage matrices at ZPD: 

 juv1 juv2 juv3 F1 F2 F3 M1 M2 M3 

juv1 0.497 0.000 0.000 0.366 0.366 0.366 0.000 0.000 0.000 

juv2 0.438 0.497 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

juv3 0.000 0.438 0.497 0.000 0.000 0.000 0.000 0.000 0.000 

F1 0.000 0.000 0.219 0.942 0.000 0.000 0.000 0.000 0.000 

F2 0.000 0.000 0.000 0.040 0.942 0.000 0.000 0.000 0.000 

F3 0.000 0.000 0.000 0.000 0.040 0.942 0.000 0.000 0.000 

M1 0.000 0.000 0.219 0.000 0.000 0.040 0.942 0.000 0.000 

M2 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.942 0.000 

M3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.942 

 

b) Nine-stage matrices at K: 

 juv1 juv2 juv3 F1 F2 F3 M1 M2 M3 

juv1 0.633 0.000 0.000 0.176 0.176 0.176 0.000 0.000 0.000 

juv2 0.272 0.633 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

juv3 0.000 0.272 0.633 0.000 0.000 0.000 0.000 0.000 0.000 

F1 0.000 0.000 0.136 0.914 0.000 0.000 0.000 0.000 0.000 

F2 0.000 0.000 0.000 0.068 0.914 0.000 0.000 0.000 0.000 

F3 0.000 0.000 0.000 0.000 0.068 0.914 0.000 0.000 0.000 

M1 0.000 0.000 0.136 0.000 0.000 0.068 0.914 0.000 0.000 

M2 0.000 0.000 0.000 0.000 0.000 0.000 0.068 0.914 0.000 

M3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.068 0.914 

 

c) Five-stage(TOSSM) matrices at ZPD: 

 juv1 juv2 fert lact male 

juv1 0.730 0.000 0.000 0.940 0.000 

juv2 0.210 0.000 0.000 0.000 0.000 

fert 0.000 0.470 0.000 0.946 0.000 

lact 0.000 0.000 0.946 0.000 0.000 

male 0.000 0.470 0.000 0.000 0.954 
 

     

      
d) Five-stage (TOSSM) matrices at K: 

 juv1 juv2 fert lact male 

juv1 0.768 0.000 0.000 0.925 0.000 

juv2 0.157 0.720 0.000 0.000 0.000 

fert 0.000 0.102 0.648 0.946 0.000 

lact 0.000 0.000 0.298 0.000 0.000 

male 0.000 0.102 0.000 0.000 0.954 
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Figure 5. Examples of trajectories for PCFG, under a model incorporating a post-whaling split with pulse 

immigration. Plots for the abundance of the PCFG whales span 1930 to 2010, while the plot showing the 

abundance of the larger ENP population spans 1846 to 2010 to show the simulated depletion due to 

commercial whaling.  
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Figure 6. Example of the number of immigrants per year generated for one replicate (9-stage matrices with 

pulse immigration). The dotted line represents the number of immigrants per year that would be expected 

when the ENP population reaches K. 
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Table 7. List of scenarios that have been completed for 100 replications. 

Index Matrices Timing of split 
Year of 

split 

PCFG 
Carrying 
Capacity 

(K) 

Immigrants/yr 
into the PCFG 

(at K) 

Pulse 
immigration 

1 9-stage Post-whaling split 1930 200 0 Y 
2 9-stage Post-whaling split 1930 200 1 Y 
3 9-stage Post-whaling split 1930 200 2 Y 
4 9-stage Post-whaling split 1930 200 4 Y 
5 9-stage Post-whaling split 1930 200 6 Y 
6 9-stage Post-whaling split 1930 200 8 Y 
7 9-stage Post-whaling split 1930 200 10 Y 
8 9-stage Post-whaling split 1930 200 12 Y 
9 9-stage Post-whaling split 1930 200 14 Y 

10 9-stage Post-whaling split 1930 200 16 Y 

       
11 9-stage Post-whaling split 1930 200 0 N 
12 9-stage Post-whaling split 1930 200 1 N 
13 9-stage Post-whaling split 1930 200 2 N 
14 9-stage Post-whaling split 1930 200 4 N 
15 9-stage Post-whaling split 1930 200 6 N 
16 9-stage Post-whaling split 1930 200 8 N 
17 9-stage Post-whaling split 1930 200 10 N 
18 9-stage Post-whaling split 1930 200 12 N 
19 9-stage Post-whaling split 1930 200 14 N 
20 9-stage Post-whaling split 1930 200 16 N 

       
21 5-stage Post-whaling split 1930 200 0 Y 
22 5-stage Post-whaling split 1930 200 1 Y 
23 5-stage Post-whaling split 1930 200 2 Y 
24 5-stage Post-whaling split 1930 200 4 Y 
25 5-stage Post-whaling split 1930 200 6 Y 
26 5-stage Post-whaling split 1930 200 8 Y 
27 5-stage Post-whaling split 1930 200 10 Y 
28 5-stage Post-whaling split 1930 200 12 Y 
29 5-stage Post-whaling split 1930 200 14 Y 
30 5-stage Post-whaling split 1930 200 16 Y 

       31 9-stage Post-whaling split 1940 200 0 Y 
32 9-stage Post-whaling split 1950 200 0 Y 
33 9-stage Post-whaling split 1960 200 0 Y 
34 9-stage Post-whaling split 1970 200 0 Y 
35 9-stage Post-whaling split 1980 200 0 Y 
36 9-stage Post-whaling split 1990 200 0 Y 

       37 9-stage Post-whaling split 1930 500 0 Y 
38 9-stage Post-whaling split 1930 1000 0 Y 
39 9-stage Post-whaling split 1930 1500 0 Y 
40 9-stage Post-whaling split 1930 2000 0 Y 
41 9-stage Post-whaling split 1930 3000 0 Y 
42 9-stage Post-whaling split 1930 5000 0 Y 

       * Pulse immigration consists of +20 animals in per year as reflected in the abundance in 2000 and 2001 
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Table 8. The number of samples collected per year from each stratum in the Lang et al. 2011 study.  

Year North PCFG 

1994 11 0 

1995 0 0 

1996 0 3 

1997 1 3 

1998 0 7 

1999 1 0 

2000 1 2 

2001 27 0 

2002 0 1 

2003 12 3 

2004 12 3 

2005 10 1 

2006 0 0 

2007 0 0 

2008 0 0 

2009 0 13 

2010 28 35 

Total 103 71 
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Table 9. Summary of the haplotypic diversity, number of mtDNA haplotypes, and nucleotide diversity 

generated in the simulated ENP population. Only the results from the post-whaling split with immigration 

pulse models are shown as results were similar under all other models. 

Haplotypic diversity: 
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         9-stage Post-whaling split 0 Y 0.948 0.883 0.973 61 39 

9-stage Post-whaling split 1 Y 0.951 0.869 0.973 52 48 

9-stage Post-whaling split 2 Y 0.950 0.878 0.974 56 44 

9-stage Post-whaling split 4 Y 0.950 0.874 0.974 57 43 

9-stage Post-whaling split 6 Y 0.950 0.890 0.972 56 44 

9-stage Post-whaling split 8 Y 0.948 0.869 0.973 64 36 

9-stage Post-whaling split 10 Y 0.949 0.878 0.977 62 38 

9-stage Post-whaling split 12 Y 0.950 0.786 0.971 54 46 

9-stage Post-whaling split 14 Y 0.948 0.862 0.973 61 39 

9-stage Post-whaling split 16 Y 0.950 0.877 0.977 52 48 

         Number of haplotypes: 
      ENP: Nb_hapsobs=32 

       9-stage Post-whaling split 0 Y 33 25 47 36 52 

9-stage Post-whaling split 1 Y 33 24 44 33 57 

9-stage Post-whaling split 2 Y 33 23 46 40 54 

9-stage Post-whaling split 4 Y 33 22 44 37 54 

9-stage Post-whaling split 6 Y 34 24 42 25 62 

9-stage Post-whaling split 8 Y 33 22 45 38 55 

9-stage Post-whaling split 10 Y 33 20 45 38 54 

9-stage Post-whaling split 12 Y 33 20 43 37 57 

9-stage Post-whaling split 14 Y 33 23 44 38 52 

9-stage Post-whaling split 16 Y 33 25 45 31 56 

         Nucleotide diversity: 
       ENP:  ∏ obs = 0.0142 
       9-stage Post-whaling split 0 Y 0.026 0.012 0.065 7 93 

9-stage Post-whaling split 1 Y 0.025 0.011 0.060 10 90 

9-stage Post-whaling split 2 Y 0.024 0.012 0.056 9 91 

9-stage Post-whaling split 4 Y 0.025 0.011 0.059 9 91 

9-stage Post-whaling split 6 Y 0.025 0.011 0.060 10 90 

9-stage Post-whaling split 8 Y 0.025 0.011 0.067 8 92 

9-stage Post-whaling split 10 Y 0.024 0.011 0.059 8 92 

9-stage Post-whaling split 12 Y 0.025 0.010 0.057 9 91 

9-stage Post-whaling split 14 Y 0.025 0.011 0.071 7 93 

9-stage Post-whaling split 16 Y 0.025 0.011 0.066 9 91 
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Figure 10. Histogram showing the distribution of p-values for a χ2 test comparing the observed to the 

simulated haplotype distributions for the larger ENP population. 

 

  



SC/64/AWMP4 

 

21 
 

Figure 11. Graphical representation of the proportion of simulated values that are lower (shown in black) or 

higher (shown in gray) than the observed value generated from the empirical data. Simulated values are 

derived from the model incorporating a post-whaling split with pulse migration under the nine-stage 

matrices.  

 

a.) Number of haplotypes: 

 

b.) Haplotypic diversity: 

 

c.) Nucleotide diversity: 
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d.) FST: 

 

e.) ɸST: 

 

 

f.) χ2/df: 
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Table 12.  Summary of number of mtDNA haplotypes in the simulated data for the PCFG. Scenarios 

highlighted in bold type produced results which were not consistent with those based on the empirical data. 
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         9-stage Post-whaling split 0 Y 12.0 6 19 100 0 
9-stage Post-whaling split 1 Y 16.6 11 26 96 2 
9-stage Post-whaling split 2 Y 19.8 11 30 78 12 
9-stage Post-whaling split 4 Y 23.1 14 32 41 48 
9-stage Post-whaling split 6 Y 25.0 14 36 22 71 
9-stage Post-whaling split 8 Y 25.7 16 33 15 75 
9-stage Post-whaling split 10 Y 27.2 18 35 9 84 
9-stage Post-whaling split 12 Y 26.3 16 34 14 80 
9-stage Post-whaling split 14 Y 27.5 21 36 10 83 
9-stage Post-whaling split 16 Y 27.1 16 38 11 83 

         9-stage Post-whaling split 0 N 6.4 3 12 100 0 
9-stage Post-whaling split 1 N 12.5 6 20 100 0 
9-stage Post-whaling split 2 N 17.1 8 24 97 1 
9-stage Post-whaling split 4 N 22.5 15 40 49 38 
9-stage Post-whaling split 6 N 23.9 12 32 36 52 
9-stage Post-whaling split 8 N 25.4 14 38 22 73 
9-stage Post-whaling split 10 N 25.8 17 37 27 66 
9-stage Post-whaling split 12 N 26.6 17 33 11 86 
9-stage Post-whaling split 14 N 27.0 17 36 11 84 
9-stage Post-whaling split 16 N 26.7 18 38 16 76 

         5-stage Post-whaling split 0 Y 10.4 6 16 100 0 
5-stage Post-whaling split 1 Y 15.0 7 23 99 0 
5-stage Post-whaling split 2 Y 18.1 9 26 88 8 
5-stage Post-whaling split 4 Y 21.5 15 30 60 29 
5-stage Post-whaling split 6 Y 22.9 15 30 49 38 
5-stage Post-whaling split 8 Y 24.1 18 35 33 56 
5-stage Post-whaling split 10 Y 24.6 17 37 29 61 
5-stage Post-whaling split 12 Y 25.0 17 35 28 65 
5-stage Post-whaling split 14 Y 24.8 18 34 30 63 
5-stage Post-whaling split 16 Y 25.4 17 37 21 67 
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Table 13. Summary of haplotypic diversity in the simulated data for the PCFG. Scenarios highlighted in bold 

type produced results which were not consistent with those based on the empirical data. 
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         9-stage Post-whaling split 0 Y 0.804 0.137 0.896 100 0 
9-stage Post-whaling split 1 Y 0.869 0.334 0.940 100 0 
9-stage Post-whaling split 2 Y 0.907 0.722 0.949 97 3 
9-stage Post-whaling split 4 Y 0.933 0.699 0.970 78 22 
9-stage Post-whaling split 6 Y 0.939 0.810 0.971 60 40 
9-stage Post-whaling split 8 Y 0.945 0.848 0.972 49 51 
9-stage Post-whaling split 10 Y 0.948 0.857 0.974 46 54 
9-stage Post-whaling split 12 Y 0.943 0.825 0.969 54 46 
9-stage Post-whaling split 14 Y 0.951 0.842 0.972 37 63 
9-stage Post-whaling split 16 Y 0.944 0.866 0.979 52 48 

         9-stage Post-whaling split 0 N 0.754 0.344 0.867 100 0 
9-stage Post-whaling split 1 N 0.841 0.608 0.928 100 0 
9-stage Post-whaling split 2 N 0.888 0.748 0.946 99 1 
9-stage Post-whaling split 4 N 0.932 0.788 0.974 84 16 
9-stage Post-whaling split 6 N 0.936 0.840 0.965 67 33 
9-stage Post-whaling split 8 N 0.941 0.835 0.974 59 41 
9-stage Post-whaling split 10 N 0.944 0.842 0.977 51 49 
9-stage Post-whaling split 12 N 0.946 0.870 0.971 45 55 
9-stage Post-whaling split 14 N 0.946 0.878 0.976 43 57 
9-stage Post-whaling split 16 N 0.947 0.841 0.976 48 52 

         5-stage Post-whaling split 0 Y 0.734 0.259 0.883 100 0 
5-stage Post-whaling split 1 Y 0.854 0.600 0.930 100 0 
5-stage Post-whaling split 2 Y 0.890 0.717 0.949 97 3 
5-stage Post-whaling split 4 Y 0.915 0.752 0.958 92 8 
5-stage Post-whaling split 6 Y 0.929 0.768 0.963 79 21 
5-stage Post-whaling split 8 Y 0.931 0.796 0.965 74 26 
5-stage Post-whaling split 10 Y 0.934 0.720 0.973 78 22 
5-stage Post-whaling split 12 Y 0.935 0.747 0.968 64 36 
5-stage Post-whaling split 14 Y 0.937 0.823 0.965 67 33 
5-stage Post-whaling split 16 Y 0.934 0.834 0.971 68 32 
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Table 14. Summary of the mtDNA nucleotide diversity in the simulated data for the PCFG. Scenarios 

highlighted in bold type produced results which were not consistent with those based on the empirical data. 

PCFG: ∏ obs = 0.0148 
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9-stage Post-whaling split 0 Y 0.021 0.004 0.059 30 70 
9-stage Post-whaling split 1 Y 0.022 0.005 0.056 20 80 
9-stage Post-whaling split 2 Y 0.022 0.010 0.063 18 82 
9-stage Post-whaling split 4 Y 0.025 0.010 0.062 15 85 
9-stage Post-whaling split 6 Y 0.025 0.010 0.062 16 84 
9-stage Post-whaling split 8 Y 0.025 0.012 0.066 10 90 
9-stage Post-whaling split 10 Y 0.025 0.010 0.058 14 86 
9-stage Post-whaling split 12 Y 0.025 0.011 0.059 15 85 
9-stage Post-whaling split 14 Y 0.025 0.011 0.059 14 86 
9-stage Post-whaling split 16 Y 0.024 0.010 0.067 16 84 

         9-stage Post-whaling split 0 N 0.020 0.002 0.080 32 68 
9-stage Post-whaling split 1 N 0.022 0.007 0.051 27 73 
9-stage Post-whaling split 2 N 0.023 0.007 0.064 18 82 
9-stage Post-whaling split 4 N 0.024 0.008 0.062 15 85 
9-stage Post-whaling split 6 N 0.025 0.010 0.064 13 87 
9-stage Post-whaling split 8 N 0.024 0.010 0.060 11 89 
9-stage Post-whaling split 10 N 0.026 0.010 0.074 14 86 
9-stage Post-whaling split 12 N 0.025 0.010 0.065 12 88 
9-stage Post-whaling split 14 N 0.025 0.011 0.059 12 88 
9-stage Post-whaling split 16 N 0.025 0.010 0.058 12 88 

         5-stage Post-whaling split 0 Y 0.015 0.004 0.042 51 49 
5-stage Post-whaling split 1 Y 0.018 0.003 0.046 44 56 
5-stage Post-whaling split 2 Y 0.018 0.005 0.048 37 63 
5-stage Post-whaling split 4 Y 0.017 0.005 0.051 27 73 
5-stage Post-whaling split 6 Y 0.019 0.005 0.054 27 73 
5-stage Post-whaling split 8 Y 0.020 0.006 0.048 31 69 
5-stage Post-whaling split 10 Y 0.020 0.004 0.053 31 69 
5-stage Post-whaling split 12 Y 0.020 0.005 0.052 27 73 
5-stage Post-whaling split 14 Y 0.021 0.005 0.052 29 71 
5-stage Post-whaling split 16 Y 0.020 0.006 0.050 25 75 
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Table 15. Summary of FST values generated in the comparison of simulated data representing the PCFG and 

the larger ENP population. Scenarios highlighted in bold type produced results which were not consistent 

with those based on the empirical data. 

FST obs = 0.012 
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9-stage post-whaling split 0 Y 0.069 0.019 0.254 0 100 
9-stage post-whaling split 1 Y 0.040 0.005 0.189 1 99 
9-stage post-whaling split 2 Y 0.023 0.002 0.096 16 84 
9-stage post-whaling split 4 Y 0.011 -0.004 0.033 53 47 
9-stage post-whaling split 6 Y 0.005 -0.005 0.030 80 20 
9-stage post-whaling split 8 Y 0.002 -0.004 0.017 94 6 
9-stage post-whaling split 10 Y 0.002 -0.007 0.021 96 4 
9-stage post-whaling split 12 Y 0.001 -0.006 0.019 98 2 
9-stage post-whaling split 14 Y 0.001 -0.007 0.013 99 1 
9-stage post-whaling split 16 Y 0.001 -0.007 0.020 97 3 

         9-stage post-whaling split 0 N 0.099 0.029 0.295 0 100 
9-stage post-whaling split 1 N 0.051 0.020 0.146 0 100 
9-stage post-whaling split 2 N 0.032 0.006 0.098 9 91 
9-stage post-whaling split 4 N 0.012 -0.004 0.058 47 53 
9-stage post-whaling split 6 N 0.008 -0.003 0.035 71 29 
9-stage post-whaling split 8 N 0.003 -0.004 0.025 91 9 
9-stage post-whaling split 10 N 0.003 -0.006 0.022 93 7 
9-stage post-whaling split 12 N 0.001 -0.007 0.015 98 2 
9-stage post-whaling split 14 N 0.002 -0.007 0.016 98 2 
9-stage post-whaling split 16 N 0.001 -0.006 0.048 92 8 

         5-stage post-whaling split 0 Y 0.101 0.018 0.323 0 100 
5-stage post-whaling split 1 Y 0.044 0.007 0.150 6 94 
5-stage post-whaling split 2 Y 0.025 -0.002 0.097 18 82 
5-stage post-whaling split 4 Y 0.009 -0.004 0.045 64 36 
5-stage post-whaling split 6 Y 0.004 -0.008 0.040 87 13 
5-stage post-whaling split 8 Y 0.002 -0.004 0.021 90 10 
5-stage post-whaling split 10 Y 0.003 -0.005 0.025 94 6 
5-stage post-whaling split 12 Y 0.001 -0.007 0.014 96 4 
5-stage post-whaling split 14 Y 0.001 -0.006 0.016 98 2 
5-stage post-whaling split 16 Y 0.000 -0.006 0.019 97 3 
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Table 16. Summary of ɸST values generated in the comparison of simulated data representing the PCFG and 

the larger ENP population. Scenarios highlighted in bold type produced results which were not consistent 

with those based on the empirical data. 
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9-stage Arch1_sc1 0 Y 0.065 0.000 0.332 12 88 

9-stage Arch1_sc2 1 Y 0.030 -0.002 0.240 44 56 

9-stage Arch1_sc3 2 Y 0.021 -0.004 0.080 53 47 

9-stage Arch1_sc4 4 Y 0.007 -0.009 0.074 79 21 

9-stage Arch1_sc5 6 Y 0.000 -0.011 0.062 91 9 

9-stage Arch1_sc6 8 Y -0.001 -0.011 0.036 98 2 

9-stage Arch1_sc7 10 Y 0.000 -0.011 0.028 96 4 

9-stage Arch1_sc8 12 Y -0.003 -0.011 0.055 96 4 

9-stage Arch1_sc9 14 Y 0.000 -0.011 0.044 94 6 

9-stage Arch1_sc9 16 Y -0.001 -0.010 0.032 98 2 

         9-stage Arch1_sc1 0 N 0.090 0.005 0.439 7 93 

9-stage Arch1_sc2 1 N 0.043 0.002 0.237 23 77 

9-stage Arch1_sc3 2 N 0.026 -0.008 0.187 48 52 

9-stage Arch1_sc4 4 N 0.009 -0.010 0.064 84 16 

9-stage Arch1_sc5 6 N 0.007 -0.009 0.087 86 14 

9-stage Arch1_sc6 8 N 0.001 -0.011 0.071 87 13 

9-stage Arch1_sc7 10 N -0.002 -0.011 0.051 93 7 

9-stage Arch1_sc8 12 N -0.002 -0.011 0.037 93 7 

9-stage Arch1_sc9 14 N -0.001 -0.010 0.040 93 7 

9-stage Arch1_sc10 16 N -0.002 -0.010 0.092 94 6 

         5-stage Arch1_sc1 0 Y 0.099 0.007 0.501 7 93 

5-stage Arch1_sc2 1 Y 0.032 -0.004 0.321 40 60 

5-stage Arch1_sc3 2 Y 0.014 -0.008 0.181 67 33 

5-stage Arch1_sc4 4 Y 0.005 -0.007 0.068 83 17 

5-stage Arch1_sc5 6 Y 0.002 -0.010 0.044 95 5 

5-stage Arch1_sc6 8 Y 0.000 -0.010 0.108 88 12 

5-stage Arch1_sc7 10 Y 0.001 -0.010 0.051 95 5 

5-stage Arch1_sc8 12 Y -0.003 -0.011 0.045 99 1 

5-stage Arch1_sc9 14 Y -0.002 -0.010 0.044 94 6 

5-stage Arch1_sc9 16 Y -0.002 -0.011 0.042 94 6 
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Table 17. Summary of χ2/df values generated in the comparison of simulated data representing the PCFG and 

the larger ENP population. Scenarios highlighted in bold type produced results which were not consistent 

with those based on the empirical data. 
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9-stage Arch1_sc1 0 Y 2.65 1.57 3.66 0 100 

9-stage Arch1_sc2 1 Y 2.05 1.41 3.49 1 99 

9-stage Arch1_sc3 2 Y 1.70 1.00 2.87 20 80 

9-stage Arch1_sc4 4 Y 1.41 0.85 2.13 54 46 

9-stage Arch1_sc5 6 Y 1.19 0.74 1.71 83 17 

9-stage Arch1_sc6 8 Y 1.11 0.77 1.69 91 9 

9-stage Arch1_sc7 10 Y 1.07 0.66 1.51 97 3 

9-stage Arch1_sc8 12 Y 1.05 0.63 1.53 99 1 

9-stage Arch1_sc9 14 Y 1.06 0.59 1.43 99 1 

9-stage Arch1_sc9 16 Y 1.03 0.74 1.55 99 1 

         9-stage Arch1_sc1 0 N 3.23 1.87 4.73 0 100 

9-stage Arch1_sc2 1 N 2.38 1.52 3.74 0 100 

9-stage Arch1_sc3 2 N 1.93 1.25 3.21 9 91 

9-stage Arch1_sc4 4 N 1.47 0.94 2.12 43 57 

9-stage Arch1_sc5 6 N 1.30 0.81 2.02 73 27 

9-stage Arch1_sc6 8 N 1.16 0.71 1.76 84 16 

9-stage Arch1_sc7 10 N 1.14 0.71 1.62 91 9 

9-stage Arch1_sc8 12 N 1.07 0.70 1.80 95 5 

9-stage Arch1_sc9 14 N 1.08 0.76 1.58 96 4 

9-stage Arch1_sc10 16 N 1.04 0.71 1.77 95 5 

         5-stage Arch1_sc1 0 Y 2.87 1.50 4.41 0 100 

5-stage Arch1_sc2 1 Y 2.16 1.07 3.90 5 95 

5-stage Arch1_sc3 2 Y 1.71 0.92 2.62 18 82 

5-stage Arch1_sc4 4 Y 1.32 0.82 1.89 64 36 

5-stage Arch1_sc5 6 Y 1.20 0.55 1.64 93 7 

5-stage Arch1_sc6 8 Y 1.12 0.68 1.67 94 6 

5-stage Arch1_sc7 10 Y 1.12 0.71 1.67 92 8 

5-stage Arch1_sc8 12 Y 1.04 0.69 1.59 97 3 

5-stage Arch1_sc9 14 Y 1.02 0.64 1.47 98 2 

5-stage Arch1_sc9 16 Y 1.01 0.70 1.48 99 1 
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Table 18. Measures of haplotypic diversity, number of haplotypes, and FST values produced in simulations 

incorporating a split of the PCFG between 1940 and 1990. These simulations utilized a model incorporating 

pulse migration and no annual immigration into the PCFG. Scenarios highlighted in bold type produced 

results which were not consistent with those based on the empirical data. 

Haplotypic diversity: 
  PCFG: Hobs = 0.945 
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1940 0.863 0.591 0.925 100 0 

1950 0.884 0.721 0.932 100 0 

1960 0.905 0.766 0.950 98 2 

1970 0.927 0.821 0.963 80 20 

1980 0.939 0.804 0.969 68 32 

1990 0.942 0.883 0.969 55 45 

      Number of haplotypes 
  PCFG: Nbobs=23 
  1940 14 7 20 100 0 

1950 16 10 23 99 0 

1960 17 11 23 96 0 

1970 21.5 12 28 65 22 

1980 24 15 33 33 57 

1990 25 17 34 25 68 

      FST 
     FST obs = 0.012 

  1940 0.046 0.008 0.177 1 99 

1950 0.036 0.011 0.104 1 99 

1960 0.022 0.003 0.077 16 84 

1970 0.009 -0.005 0.029 64 36 

1980 0.006 -0.003 0.035 84 16 

1990 0.003 -0.005 0.015 97 3 
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Table 19. Measures of haplotypic diversity, number of haplotypes, and FST values produced in simulations 

incorporating a carrying capacity for the PCFG ranging from 500 to 5000 animals. These simulations utilized 

a model incorporating pulse migration and no annual immigration into the PCFG. Scenarios highlighted in 

bold type produced results which were not consistent with those based on the empirical data. 

Haplotypic diversity: 
  PCFG: Hobs = 0.945 
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500 0.876 0.714 0.937 100 0 

1000 0.911 0.808 0.949 96 4 

1500 0.922 0.818 0.959 90 10 

2000 0.932 0.765 0.966 72 28 

3000 0.934 0.841 0.965 73 27 

5000 0.945 0.849 0.967 47 53 

      Number of haplotypes 
  PCFG: Nbobs=23 
  500 14 7 24 99 1 

1000 17 9 23 98 0 

1500 20 12 27 90 5 

2000 20.5 15 28 69 21 

3000 22 15 32 51 40 

5000 26 16 34 20 73 

      FST 
     FSTobs = 0.012 

  500 0.037 0.013 0.111 0 100 

1000 0.021 0.006 0.058 21 79 

1500 0.015 0.002 0.044 39 61 

2000 0.012 -0.002 0.041 52 48 

3000 0.007 -0.003 0.025 74 26 

5000 0.006 -0.004 0.019 91 9 
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Table 20. Example trajectories for simulations with KPCFG set between 500 and 5000. Note that scale of y-axis 

differs across figures. 
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Table 21. Median PCFG abundance in 2010 for scenarios with KPCFG set between 500 and 5000.  

K PCFG N 2010 (median and 
90% range)  

500 501 (466 – 542) 
1000 998 (923-1063) 
1500 1496 (1391-1588) 
2000 1994(1864-2080) 
3000 3002(2831-3128) 
5000 4945 (4790-5095) 

 

 

Table 22. The expected number of immigrants/year at the cross-over point under the scenarios with and 

without pulse immigration. The cross-over is derived by calculating the point at which 50% of the simulation 

replicates produce values for each summary statistic that are higher than that for the empirical data.  

Matrices Timing of split 
Pulse 

migration 
Number of 
haplotypes 

Haplotypic 
diversity 

FST ɸST χ2/df 

9-stage Post-whaling split Y 3.77 7.82 3.84 1.67 3.76 
9-stage Post-whaling split N 4.35 10.25 4.25 2.11 4.47 
5-stage Post-whaling split Y 6.76 ----- 3.39 1.37 3.39 
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Appendix: 

This appendix includes additional tables and figures aimed at understanding how well the model 

underlying our simulations is mimicking reality and/or the IR trial structure. 

Table A1. Generation time estimates as calculated using different maximum ages for both 5-stage TOSSM  

and 9-stage matrices. 

  5-stage matrices 9-stage matrices 

Max Age K ZPD K ZPD 

40 19.52 16.92 21.05 20.59 

50 21.68 18.74 23.65 23.86 

100 26.04 22.25 28.29 32.87 

150 26.64 22.69 28.61 34.93 

1000 26.71 22.74 28.63 35.27 

 

Table A2. The number of calves produced per year in simulated datasets at K as compared to data derived 

from photo-identification studies 

Source 

Abundance 
(median with 

range): Number of calves/yr % Calves 

5-stage matrices: 197(156-218) 11 (2-31) 6% 

9-stage matrices: 195 (161-217) 10 (2-23) 5% 

Photo-identification estimates 194 † 3 (0-9)†† 2% 

†Annex F, IWC 2011 

†† Calambokidis et al. 2008 (data from 1998-2008) 
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Figure A1.  Age distribution in simulated datasets (note different x-axis scales): 

a) Nine-stage matrices: 

a.) Five-stage matrices:  
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