COASTAL OCEAN TEMPERATURE (UPDATED)

Like global ocean temperatures, California coastal temperatures have warmed over the past century.

What is the indicator showing?

Sea surface temperature (SST) measured in La Jolla has increased by about 1°C since 1916, an annual warming rate of approximately 0.011°C—about twice higher than the global average rate of warming of 0.006°C/year over the last century (NCDC, 2005).

Why is this indicator important?

Temperature is one of the best-measured and most reliable signals of climate change. Global warming is unequivocal; the mean sea and land surface has increased by 0.74°C (+/- 0.18) over the last 100 years (IPCC, 2007e; NCDC, 2008). The rate of warming has been accelerating; the linear trend over the last 50 years is nearly twice that rate. Coastal ocean warming is consistent with this accelerating trend.

Ocean temperatures contribute to global sea level rise because warming water expands. Warmer waters also play a role in more extreme weather events, by influencing the energy and moisture of the atmosphere. Ecological impacts will include a northward shift in species distributions (Barry et al., 1995). Greater vertical stratification (layers of solar-heated water over layers of denser cold water) of the water column (Palacios et al., 2004) will reduce upwelling and the movement of nutrients into the photic zone (the depth of the water that is exposed to sufficient sunlight for photosynthesis to occur) reducing biological productivity (Roemmich and McGowan,
Temperature is one of several factors that influence the California marine ecosystem and its populations. It directly affects the range, growth and survival of many species, the location and production of food and predators, and fish catch. SST also influences other factors, including transport and water column structure that affect populations.

Ocean observations (Levitus et al., 2001) and global climate models (IPCC, 2007e) confirm that while some of the past variability in surface temperature was due to natural climate fluctuations, global greenhouse gas increases have contributed a significant portion of the observed warming trend. This growing database is an important resource for separating natural from anthropogenic climate changes in our coastal zone. This provides an indication of how future climate change will shape ecosystem structure and productivity, as well as the system’s resilience and adaptability to future change.

What factors influence this indicator?

Upper ocean temperatures off California increased by over 1°C during the 20th Century and are projected to rise by another 2-3°C by 2100 (Snyder et al., 2003). Globally, ocean temperatures warm primarily because of the net heat flux from the atmosphere as the “greenhouse effect” increases atmospheric temperatures. The world’s oceans have warmed to depths of 3000 meters during the past several decades (Levitus et al., 2001). Heat exchange with the atmosphere, which is evidenced by a more rapid rate of warming of near-surface waters, is the source of this trend.

Ocean currents redistribute heat, resulting in a greater warming rate at higher latitudes. Regionally, ocean temperatures can show much different trends, even local cooling (Mendelssohn and Schwing, 2002). On paleo-time scales, oceans have undergone extremes in warming and cooling coinciding with glacial cycles and the varying concentration of atmospheric CO2 and other greenhouse gases.

The rate of warming at La Jolla has accelerated over the past 30 years, consistent with the global trend. However the rate of warming locally has been about 70% faster than the global average. Year-to-year variability at Scripps is also much greater than the global mean. The Scripps SST time series is significantly correlated with SST records throughout the north Pacific (McGowan et al., 1998), so the interannual variability as well as long-term trend at Scripps is seen throughout the rest of the ocean. It also reflects the trend in California upper ocean temperature over the past several decades (Mendelsssohn and Schwing, 2002). SST variability relates to fluctuations in many California coastal marine populations as well (Goericke et al., 2007).

Technical Considerations

Data Characteristics

Daily SST is measured from the end of the Scripps Institution of Oceanography Pier in La Jolla CA. The proximity of Scripps Pier to the deep waters at the head of La Jolla...
submarine canyon results in data quite representative of oceanic conditions along the California coast, and throughout much of the California Current marine ecosystem (Roemmich, 1992).

Temperature readings are collected in a Shore Stations Program which provides access to current and historical data records of SST and salinity observed along the west coast of the United States (http://shorestation.ucsd.edu/). Long-term records of ocean temperature are uncommon; the SST time series maintained at Scripps extends back to 1916, making this the longest continuous record of its kind on the United States west coast and the Pacific Rim.

Strengths and Limitations of the Data

Like many climate records, Scripps SST displays considerable interannual variability. El Niño-Southern Oscillation (ENSO) is responsible for anomalously warm (cool) ocean temperatures during El Niño (La Niña) events, with major El Niño events occurring every 5-10 years (UCAR, 1994). The west coast also is affected by multi-decadal variability in temperature, characterized by patterns such as the Pacific Decadal Oscillation, or PDO (Mantua et al., 1997), and the North Pacific Gyre Oscillation, or NPGO. Natural fluctuations in temperature and other physical factors that characterize ocean conditions and affect the marine ecosystem, make it difficult to isolate the magnitude of anthropogenic climate change. However, they also provide an indication of the ecosystem's sensitivity to extremes in temperature and other factors.

References:

For more information, contact:

Franklin B. Schwing
Steven Bograd
Southwest Fisheries Science Center
Environmental Research Division
NOAA Fisheries Service
1352 Lighthouse Avenue
Pacific Grove, CA 93950-2097
(831) 648-8515; Franklin.schwing@noaa.gov
(831) 648-8314; Steven.bograd@noaa.gov
Indicators of Climate Change in California

Matthew Rodriquez
Secretary for Environmental Protection

Edmund G. Brown Jr.
Governor

George Alexeeff, Ph.D.
Director, Office of Environmental Health Hazard Assessment
INDICATORS OF CLIMATE CHANGE IN CALIFORNIA

August 2013

Compiled and Edited by:
Tamara Kadir
Linda Mazur
Carmen Milanes
Karen Randles
California Environmental Protection Agency
Office of Environmental Health Hazard Assessment

Reviewers:
David M. Siegel
Rupa Basu
Lauren Zeise
Allan Hirsch
Office of Environmental Health Hazard Assessment

Andrew Altevogt
Office of the Secretary, California Environmental Protection Agency

ACKNOWLEDGEMENT:
OEHHA is grateful to the Cal/EPA Office of the Secretary, and to the staff and researchers (listed on the next page) who contributed their ideas, data, findings and other information for inclusion in this report.

Cover design: California Air Resources Board
CONTRIBUTORS

John Abatzoglou, University of Idaho
Simone Alin, NOAA Pacific Marine Environmental Laboratory
Patty Arneson, U.C. Davis Tahoe Environmental Research Center
Dennis Baldocchi, University of California
Grant Ballard, PRBO Conservation Science
Christopher Barker, University of California, Davis
Hassan J. Basagic, Portland State University
Rupa Basu, Office of Environmental Health Hazard Assessment
Steven Bograd, NOAA/NMFS Southwest Fisheries Science Center
Russell W. Bradley, PRBO Conservation Science
Dan Cayan, Scripps Institution of Oceanography and U.S. Geological Survey
Francisco Chavez, Monterey Bay Aquarium Research Institute
Robert Coats, U.C. Davis Tahoe Environmental Research Center
Thomas J. Conway, NOAA Earth System Research Laboratory
Michael Dettinger, Scripps Institution of Oceanography and U.S. Geological Survey
Edward J. Dlugokencky, NOAA Earth System Research Laboratory
Chris Dolanc, University of California, Davis
Marc Fischer, Lawrence Berkeley National Laboratory
Matthew L. Forister, University of Nevada, Reno
Andrew G. Fountain, Portland State University
Guido Franco, California Energy Commission
Frank Gehrke, Department of Water Resources
Alexander Gershunov, Scripps Institution of Oceanography
Kristen Guirguis, Scripps Institution of Oceanography
Diana Humple, PRBO Conservation Science
Jaime Jahncke, PRBO Conservation Science
Ralph Keeling, Scripps Institution of Oceanography
Anne E. Kelly, University of California, Irvine
Eike Luedeling, World Agroforestry Centre, Nairobi, Kenya
Karen Lutter, California Air Resources Board
Sharon Melin, NOAA/NMFS National Marine Mammal Laboratory
Constance Millar, U.S. Forest Service, Pacific Southwest Research Station
Craig Moritz, University of California, Berkeley
Nehzat Motallebi, California Air Resources Board
Bill Peterson, NOAA Fisheries, Hatfield Marine Science Center
Stephen Piper, Scripps Institution of Oceanography
Kelly Redmond, Western Regional Climate Center
William Reisen, Western Regional Climate Center
Maurice Roos, Department of Water Resources
S. Geoffrey Schladow, U.C. Davis Tahoe Environmental Research Center
David Sapsis, Department of Forestry and Fire Protection
Franklin B. Schwing, NOAA/NMFS Southwest Fisheries Science Center
Arthur Shapiro, University of California, Davis
William J. Sydeman, Farallon Institute for Advanced Ecosystem Research
Pieter Tans, NOAA Earth System Research Laboratory
Webster Tasat, California Air Resources Board
James Thorne, University of California, Davis
Phil van Mantgem, U.S. Geological Survey, Redwood Field Station
Brian Wells, NOAA/NMFS, Southwest Fisheries Science Center
Anthony L. Westerling, University of California, Merced
John Wiens, PRBO Conservation Science
TABLE OF CONTENTS

EXECUTIVE SUMMARY ... i

INTRODUCTION ... 1

- Indicator identification ... 1
- Indicator selection .. 4
- Indicators of climate change in California ... 5

CLIMATE CHANGE DRIVERS ... 6

- Greenhouse Gas Emissions (Updated) ... 7
- Atmospheric Greenhouse Gas Concentrations (Updated) ... 19
- Atmospheric Black Carbon Concentrations (New) ... 28
- Acidification of Coastal Waters (New) ... 32

CHANGES IN CLIMATE ... 36

- Annual Air Temperature (Updated) .. 37
- Extreme Heat Events (Updated) .. 48
- Winter Chill (Updated information) .. 54
- Freezing Level Elevation (New) .. 59
- Annual Precipitation (Updated) ... 63

IMPACTS ON PHYSICAL SYSTEMS ... 70

- Annual Sierra Nevada Snowmelt Runoff (Updated) ... 71
- Snow-water Content (Updated) ... 76
- Glacier Change (Updated Information) .. 82
- Sea Level Rise (Updated) .. 88
- Lake Water Temperature (Updated) .. 94
- Delta Water Temperature (Updated) ... 104
- Coastal Ocean Temperature (Updated) ... 110
- Oxygen Concentrations in the California Current (No update) .. 115
IMPACTS ON BIOLOGICAL SYSTEMS ...119

Mosquito-Borne Diseases (Updated Information) ...120
Heat-Related Mortality and Morbidity (Updated Information)124
Exposure to Urban Heat Islands (New) ..130
Tree Mortality (Updated Information) ..132
Large Wildfires (Updated Information) ..137
Forest Vegetation Patterns (No update) ...145
Subalpine Forest Density (New) ..151
Vegetation Distribution Shifts (New) ..157
Alpine and Subalpine Plant Changes (No update) ...164
Wine Grape Bloom (Updated Information) ..167
Migratory Bird Arrivals (No update) ...171
Small Mammal Range Shifts (No update) ...176
Spring Flight of California Central Valley Butterflies (Updated)182
Effects of Ocean Acidification on Marine Organisms (New)189
Copepod Populations (Updated) ...191
Sacramento Fall Run Chinook Salmon Abundance (New)198
Cassin’s Auklet Breeding Success (Updated) ..202
Shearwater and Auklet Populations off Southern California (New)210
Sea Lion Pup Mortality and Coastal Strandings (New)217

EMERGING CLIMATE CHANGE ISSUES ..223

Harmful Algal Blooms ..223
Valley Fog ...224
Forest Diseases and Bark Beetle Infestations ..225
Changing Pattern of Extreme Events ..225

APPENDIX A CALIFORNIA’S EFFORTS TO ADDRESS CLIMATE CHANGEA-1

Mitigation ...A-1
Adaptation ...A-2
Research ...A-3

APPENDIX B. NORTH PACIFIC OCEAN CONDITIONS AND PROJECTIONS FOR
CLIMATE CHANGE ...B-1