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INTRODUCTION 

Southwest Fisheries Science Center (SWFSC) has been conducting shipboard visual line-transect 

surveys of marine mammals since the 1970s (Kinzey et al., 2000). Passive acoustic detection 

methods were incorporated in a systematic manner in 2000 (Rankin et al., 2008a). Passive 

acoustic detection of marine mammals is not limited by light, sea, and weather conditions and in 

some conditions, such as low light and inclement weather, can be more effective than visual 

methods (Thomas et al., 1986). Passive acoustic detection methods have been shown to improve 

the accuracy of cetacean abundance estimation for some species when coupled with visual 

detection (Barlow and Taylor, 2005; Barlow and Rankin, 2007). In addition, passive acoustic 

detection provides valuable information about marine mammals missed by visual observers 

during surveys (Rankin et al., 2008a). The ability of passive acoustic methods to aid in 

population surveys depends on the ability to accurately determine species identity from acoustic 

detections. 

 

Several species of cetaceans produce calls that are distinct, easily detected with passive acoustics 

methods, and identifiable to species. These include vocalizations from baleen whales and sperm 

whales (Rankin and Barlow, 2005; Goold and Jones, 1995).  For example, North Pacific minke 

whales are known for their unusual and unique ‘boing’ vocalization (Rankin and Barlow, 2005) 

and sperm whales produce distinctive clicks (Watkins, 1980).  

 

Bio-acoustic signals produced by dolphins are more difficult to identify to species compared to 

those produced by most whales (Oswald, 2007). Their sounds are categorized into three types 

(echolocation clicks, burst pulses, and whistles), each of which can be used for species 

classification. Echolocation clicks of some species contain consistent spectral features that are 

species-specific and therefore can be used for species classification (Soldevilla et al., 2008). 

Burst pulses are broadband click trains with short interclick intervals. These call types have not 

yet been used in species identification (Roch et al., 2006). Whistles are frequency-modulated 

tonal calls that are highly variable within and among species (Lammers et al., 2003).  In general, 

most delphinid whistles have energy in lower frequencies than echolocation clicks, and therefore 

propagate greater distances. This characteristic makes them useful for species identification 

during vessel- based marine mammal surveys.  
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Real-time Odontocete Call Classification Algorithm (ROCCA) is a Matlab-based tool that 

classifies dolphin species based on analysis of dolphin whistles (Oswald et al., 2007).  Whistles 

are manually selected by an operator, and ROCCA uses the algorithm TRIA (written by M.O. 

Lammers) to extract the fundamental whistle contour. The contour extraction and measurement 

processes are semi-automated. ROCCA automatically measures 55 variables from the whistle 

contour. Whistles are classified to species using a suite of statistical analyses of measured 

variables (Fig. 1; Appendix A).  Previous versions of ROCCA used discriminant function 

analysis (DFA) and classification and regression trees (CART) analysis to classify whistles 

(Oswald et al., 2007).  Currently, random-forest classifiers (Brieman, 2001) are being developed 

for use in ROCCA. Breiman (2001) developed random-forest classifiers by creating multiple 

classification trees (= a forest) modeled from specific training data. The trees are used to provide 

a consensus prediction for novel input data. Correct classification scores vary by species and 

analysis methods; however, overall correct classification scores are significantly greater than 

chance for all classification algorithms that have been tested (Oswald et al., 2007; J. Carretta, 

pers. comm.; Appendix B).  To date, most analysis of acoustic species identity using ROCCA 

has been post-cruise processed from acoustic recordings.   

 

The SWFSC has used ROCCA in real-time during shipboard field surveys to a limited extent.  

ROCCA was used in real-time to determine the species identity of false killer whales, Pseudorca 

crassidens, during two SWFSC surveys in 2005 (Barlow and Rankin, 2007) and 2010. ROCCA 

was implemented in the acoustics protocol in a 2006 survey solely for whistle data collection. 

ROCCA is currently being restructured to improve accuracy and ease of use in real-time 

applications by automating several of the features. The value of ROCCA in real-time 

applications depends on its accuracy when utilized in the field.  Correct classification results 

provided by Oswald et al. (2007) were based on post-cruise processing of whistles selected using 

standardized random methods. It is unclear if these classification results can be applied to real-

time applications.  There are at least two differences between real-time (RT) and post-cruise 

(PC) application of ROCCA that may affect correct classification: whistle selection methods and 

whistle contour extraction accuracy. 
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Standardized post-cruise analysis methods allow for careful whistle selection and contour 

extraction to enable accurate whistle measurements and species classification. In real-time 

applications, whistle selection is performed by a field technician, and the number and type of 

whistles selected may vary depending on any number of factors.  There is an inherent bias in the 

whistle selection, and this bias may vary by field technician and by encounter.  In fact, for this 

study, whistles selected by one field technician were specifically chosen if they were considered 

difficult for ROCCA to correctly classify (S. Rankin, pers. comm.).  There is growing evidence 

that some whistles may be easier to classify to species (J. Oswald, pers. comm.), and therefore 

the correct classification of a group may vary based on the specific whistles chosen for analysis. 

Whistle variables used as input to ROCCA’s classification algorithms are measured from 

contours extracted using  TRIA. Changes in the accuracy of whistle contour extraction may 

affect the whistle measurements, and therefore the species classification.  In real-time 

applications, an accurate whistle contour extraction may not be possible due to certain 

limitations, including time, animal behavior, and equipment issues.   

 

In this report, we examine the effects of whistle selection methods and whistle contour and 

measurement accuracy on the classification of whistles collected during a survey in the eastern 

tropical Pacific Ocean (ETP).  During this shipboard survey, whistles were selected in real-time 

for ROCCA without regard to the accuracy of the whistle contour extraction and then re-

analyzed using post-cruise methods to allow for precise contour extractions. A comparison of the 

results is presented.  Whistles from these same dolphin encounters were also selected based on 

the standardized post-cruise methods. A comparison of the classification results for the whistles 

selected in real-time and using the standardized post-cruise methods were examined to determine 

the effect of whistle selection on correct classification.  The purpose of this study is to identify 

how whistle selection, whistle measurements, and overall analysis methods influence ROCCA’s 

species classification results. 
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METHODS 

Shipboard Survey 

The Stenella Abundance Research survey (STAR) 2006 was a combined visual and acoustic 

survey of marine mammals in the ETP, running from 28 July to 7 December 2006 on the NOAA 

research vessel R/V McArthur II. Visual observations followed standard SWFSC protocol 

(Kinzey et al., 2000), using two visual observers on 25 X 150 ‘big eye’ binoculars and one visual 

observer as a data-recorder and scanning the field with naked eye and hand-held binoculars.  All 

dolphin groups presented in this report were identified to species using visual methods.  

 

Acoustic monitoring followed standard SWFSC protocol (Rankin et al., 2008).  A 2-element 

hydrophone array (500 Hz – 40 kHz ± 5 dB at -150 dB re 1 V/mPa) was towed at a distance of 

200-300 m behind the ship at a depth of 8-11 m while traveling at approximately 10 knots during 

daylight hours. The array was monitored by the primary acoustics team aurally via headphones 

and visually using a scrolling real-time spectrograph display (ISHMAEL, Mellinger, 2001).  

Whistles from dolphin schools were selected for classification using ROCCA as time allowed.  

 

Acoustic Species Classification (ROCCA)  

Dolphin whistles were selected from a scrolling spectrograph (ISHMAEL, Mellinger, 2001, Fig. 

1a) using two methods: real-time whistle selection and a standardized post-cruise whistle 

selection method.  Whistles selected in real-time were chosen by field personnel from all 

whistling delphinid groups without concern for whistle quality. In an effort to provide a cross-

section of a variety of whistle types, poor-quality whistles were at times purposefully selected (S. 

Rankin, pers. comm.). Poor-quality whistles are defined as having a low signal to noise ratio 

(SNR) or as overlapping in time and frequency with other vocalizations (Fig. 2c).  Standardized 

post-cruise whistle selection methods included only single-species delphinid groups that were 

visually detected and were at least one nautical mile from other groups.  Standardized whistle 

selection methods were based on methods used in Oswald et al. (2007), but more restrictive 

standards were placed on each selected whistle (A. Rudd, pers. comm.).  Only good-quality 

whistles were selected, which are defined as having high SNR, where no part of the whistle 

appeared to be masked by background noise and there were few or no overlapping vocalizations 

(Fig. 2a).  
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The selected whistles were saved as individual wave files (Fig. 1b). ROCCA was then used to 

classify the signals using a Matlab window opened through ISHMAEL.  ROCCA opened the 

saved wave file and automatically extracted a contour of the selected whistle by stepping through 

the saved wave file, one FFT (fast Fourier transform, Charif et al., 1995) at a time, using TRIA.  

The fundamental frequency of the whistle contour was extracted based on the peak frequency in 

each window (Fig. 1c).  A routine within ROCCA ensured that random transient peaks in the 

spectrum were not mistaken for the fundamental peak frequency. In ROCCA, manual 

adjustments affecting the extracting algorithms sensitivity to noise may be made by the user to 

ensure that the contour is accurately extracted (Fig. 1d).  The contour extractions of whistles 

selected in real-time were not manually adjusted in real-time, and the accuracy of the whistle 

contour measurements was not assessed.  Post-cruise analysis of whistles included manual 

adjustments to provide an accurate extraction of the whistle contour.  Analysis of whistles 

required the accurate selection of each whistle’s starting point and careful scrutiny of the whistle 

contour (Fig. 1d; Fig. 2b), including the accurate measurement of steps and inflection points 

(Fig. 1e).  Whistles selected in both real-time and post-cruise were carefully measured using 

ROCCA during post-cruise analysis to maximize accuracy in the whistle contour extraction and 

the measurement of whistle variables. If a whistle’s contour was poorly extracted and inaccurate, 

even after manual adjustments (Fig. 2d), the whistle was discarded. 

 

If a good contour trace was achieved (Fig. 1d; Fig. 2b), 55 variables were automatically 

measured, including slopes, frequencies, steps, and positions and numbers of inflection points 

(Fig. 1e; Appendix A). These variables were then classified using a random-forest algorithm, 

which resulted in a species identification for the whistle. ROCCA maintains a running tally of 

species predictions for a single school of dolphins. Once all whistles in a school have been 

analyzed, the overall school is classified based on the species that received the highest number of 

tree votes in the random-forest analysis. 

 

Random-forest Analysis  

A random-forest model was created to classify whistles for each trial. A training dataset was 

created from past SWFSC surveys, including cruises in the ETP and off the west coast of the 
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United States. This dataset contains dolphin whistle variable measurements obtained using 

standardized post-cruise methods in ROCCA. This training dataset included 1,997 whistles from 

135 detections. All whistles were identified to species via visual sighting confirmation. The 

training dataset does not include data from the STAR 2006 survey. Results from the training 

dataset are provided in Appendix B. 

 

Random-forest is an extension of the classification and regression tree (CART) method of 

Breiman et al. (1984) and creates multiple classification trees (= a “forest”), which are used to 

provide a consensus prediction for novel input data. The training dataset was used to construct 

the random-forest model containing 500 classification trees in the predictive forest. Each tree 

used a randomly-selected two-thirds of the whistles in the training dataset. The remaining one-

third of whistles not used to build the forest were then used for classification. Each tree produced 

its own error rate, and an average error rate for all 500 trees in the model was obtained 

(Appendix B).  

 

The training dataset was adjusted to provide the most accurate results. Due to the similarities in 

whistle characteristics, we combined the two common dolphin species, Delphinus delphinus and 

Delphinus capensis, into a single generic category called “Common dolphin” or “Cd”.  Certain 

outlier species were removed, such as Peponocephala electra  and Lagenodelphis hosei, due to 

insufficient whistle samples necessary to create each classifier. Two additional hybrid variables, 

‘ratio.step.duration’ and ‘ratio.inflection.duration’ (Appendix A), were also created for the 

analysis, providing 57 total variables used for classification. 

 

Three separate datasets of whistle variable measurements were analyzed using the random-forest 

model:  

Trial A:  whistles selected in real-time and measured in real-time 

Trial B:  whistles selected in real-time and measured post-cruise  

Trial C:  whistles selected post-cruise and measured post-cruise  

    

Only whistles from acoustic detections existing in both the real-time and post-cruise datasets 

were used in the random-forest analysis to maintain consistency. Each whistle was classified 500 
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times, once by each predictive tree in the forest. Each tree classified every whistle as a certain 

species. For each group, the species with the highest percentage of classifications was the 

predicted species. A confusion matrix of classification percentages was produced for each trial 

after the random-forest analysis.  

 

Variable importance was assessed within random-forest through a routine that randomized 

(swapped) variable values between records. Variables were randomized one at a time, trees were 

built from the randomized data, and out-of-bag error rates (the error rate associated with the 1/3 

of data not used to build individual trees) were generated for the forest model. Variables were 

then ‘ranked’ by importance, with the ‘most important’ variables represented by the greatest 

decline in predictive performance under the condition of randomization. 

 

RESULTS 

The acoustics team monitored 9,241 km of trackline over 100 days of effort during the 2006 

STAR survey, with a total of 774 acoustic detections of cetaceans (Fig. 3, Rankin et al., 2008a).  

One hundred fifty-five dolphin groups, producing 971 whistles, were classified using whistles 

selected in real-time; 19 dolphin groups, producing 243 whistles, were classified using whistles 

selected in post-cruise analysis.  Only acoustic detections of dolphin groups that occurred in both 

the real-time and post-cruise whistle datasets were included in the analysis (n=12 dolphin groups, 

Table 1; Fig. 3).  

 

Classification results for the random-forest training dataset are presented in Appendix B. The 

training data resulted in an overall correct classification score of 65.0% for all 500 trees. This is 

significantly higher than the 12.5% expected based on chance alone for eight species.  Whistles 

from false killer whales had the highest correct classification score (93.4%) and whistles from 

common dolphin species (73.4%) had the second highest score. Whistles from rough-toothed 

dolphins, Steno bredanensis, (63.9%) and spotted dolphins, Stenella attenuata, (63.7%) had 

similar scores. Whistles from bottlenose dolphins, Tursiops truncatus, (43.2%) and spinner 

dolphins, Stenella longirostris, (37.7%) produced the lowest correct classification scores. A high 

percentage of striped dolphin whistles, Stenella coeruleoalba, (30.1%) and spinner dolphin 

whistles (17.9%) were misclassified as common dolphins.  
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For Trial A (RT selection, RT measurement), an overall correct classification score of 33.9% 

was obtained (Table 2). Whistles from false killer whales, (72.2%) received the highest 

classification score, followed by rough-toothed dolphins (55.6%). Whistles from striped dolphins 

(25.4%), spotted dolphins (25.0%), and spinner dolphins (20.8%), produced the lowest correct 

classification scores. A high percentage of whistles from spotted dolphins (25.0%) and striped 

dolphins (18.6%) were misclassified as common dolphin. 

 

Trial B (RT selection, PC measurement), resulted in an overall correct classification score of 

36.4% (Table 3). Whistles from false killer whales (72.2%) had the highest correct classification 

score and spotted dolphins (62.5%) had the second highest correct classification score, followed 

by rough-toothed dolphins (55.6%). Whistles from spinner dolphins (25.0%) and striped 

dolphins (23.7%) received the lowest classification scores. A high percentage of whistles from 

spotted dolphins (25.0%) and spinner dolphins (23.7%) were misclassified as common dolphin.  

 

For Trial C (PC selection, PC measurement), an overall correct classification score of 17.7% was 

obtained (Table 4). Whistles from false killer whales (86.5%) received the highest correct 

classification score, and rough-toothed dolphins (20.0%) received  the second highest score. 

Whistles from spotted dolphins (7.7%) and striped dolphin (1.7%) received the lowest scores 

overall. The majority of whistles from spinner dolphins (100.0%), striped dolphins (98.3%), and 

spotted dolphins (92.3%) were misclassified as common dolphins in Trial C. 

 

Species classification for each group in Trial C consisted mostly of common dolphin. Every tie 

that occurred between species classifications in Trials A and B included common dolphin as well 

(Table 1). 

 

The importance of each variable was assessed and plotted (Fig. 4). The 30 most important 

variables used in ROCCA were determined after the randomization of variable values. The top 

three most important variables included maximum frequency, mean frequency, and center 

frequency. 
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DISCUSSION 

The random-forest analysis, consisting of five hundred trees built with the training dataset, 

resulted in an overall correct classification score of 65%. The correct classification score 

expected by chance is 12.5% (for eight species given in Appendix B). The random-forest 

(Appendix B) produced more accurate classification results for individual dolphin whistles than 

the DFA and CART methods previously used in Oswald et al. 2007. Correct classification scores 

were greatly improved using the random-forest method for several species, including false killer 

whales, short-finned pilot whales, common dolphins, spinner dolphins, spotted dolphins, and 

striped dolphins. This random-forest training dataset was used to evaluate the effects of whistle 

measurement accuracy and whistle selection methods for this study.  

 

The effect of whistle measurement accuracy on acoustic species identification can be seen by 

comparing Trials A and B (Table 5). Correct classification scores were very similar in both trials 

for several species, including false killer whales, rough-toothed dolphins, and striped dolphins. 

These results suggest that the additional effort applied during the post-cruise measurement of 

whistles in Trial B may not improve the correct classification scores for most species. One 

noticeable difference between real-time and post-cruise analysis methods for whistles selected in 

real-time occurred for spotted dolphins. Correct classification scores spotted dolphins increased 

from Trial A (25.0%) to Trial B (62.5%). The spotted dolphin whistles measured in Trials A and 

B were good-quality whistles, ruling out whistle quality as a factor of poor classification scores 

using real-time methods. For this species, it is possible that important whistle characteristics may 

be inaccurately measured in real-time due to what appear to be small differences in the initial 

whistle trace. Cursory examination of these whistles suggests that the end and maximum 

frequency, and possibly the number of steps, may be critical whistle characteristics that must be 

accurately measured for correctly classifying spotted dolphins (Fig. 5). Studying specific 

characteristics of dolphin whistles may also clarify why many individual whistles and dolphin 

groups were misclassified as common dolphin. 

 

The effect of the whistle selection method on acoustic species identification can be seen by 

comparing Trials B and C (Table 5). Overall correct classification scores decreased between 

whistles selected in real-time (Trial B; 36.4%) and whistles selected in post-cruise (Trial C; 



 12 

17.7%). Only false killer whale whistles showed improved scores between Trial B (72.2%) and 

Trial C (86.5%). Post-cruise selection of whistles for the 2006 survey included only whistles 

with a high SNR for all parts of the whistle. These data suggest that whistle selection methods 

may influence our ability to accurately identify most species using dolphin whistles.  

 

During SWFSC surveys, after the initial visual detection of a dolphin school, the course and 

speed of the survey vessel are often altered to approach the animals for confirmation of species 

identity and group size estimation. This change in the vessels track to a ‘chase’ mode may lead to 

changes in behavior of dolphins nearby. For example, in the ETP, dolphins of the genus Stenella 

(spotted, spinner, and striped dolphins) typically exhibit evasive behaviors, often swimming 

rapidly away from the ship. Changes could also affect vocal behavior.  For example, whistles 

with a high SNR are often recorded during the final close approach of the ship to the group of 

animals. It is possible that, for many species, these whistles are not representative of their normal 

whistle repertoire or behavior. Whistles used in the training dataset were chosen from a wider 

range of SNRs and may contain a more representative sample of normal whistle repertoires than 

the whistle dataset selected for post-cruise analysis. Our data suggest that only selecting ‘good 

quality’ whistles with a high SNR may create a bias that negatively affects ROCCA’s ability to 

correctly classify many species. Future studies should include all whistles that have a sufficiently 

high SNR for whistle contour extraction in ROCCA. 

 

In general, the accuracy of ROCCA whistle measurements made in real-time may be sufficient 

for the identification of most species (Trial A). However, spotted dolphin classification scores 

improved with post-cruise whistle measurements (Trial B). Unfortunately, the small sample size 

in this study is insufficient to explain these improved scores, which may be due to inaccurate 

measurement of specific variables.  Of the 57 variables measured, only a subset of variables is 

important in classifying dolphin whistles, and variable importance is likely to vary by species 

(Fig. 4).  Analyzing a larger sample of dolphin whistles would allow us to identify variables that 

are more likely to impact classification results. 

 

The comparison of whistle selection methods (Trial B versus Trial C) suggests that it may be 

possible to relax the strict whistle selection methods applied during post-cruise analysis. In fact, 
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the post-cruise methods for the 2006 dataset (Trial C) were more restrictive than the methods 

used to create the training dataset presented in Appendix B, where the overall correct 

classification score was 65%. Future studies should examine the effects of chase on vocal 

behaviors of delphinids. A larger dataset needs to be examined to study any changes in whistle 

characteristics due to chase and the effects that these changes have on ROCCA species 

identification. In addition, not all of the species included in ROCCA were present in the STAR 

2006 dataset.  As a result, nothing is known of the effects of whistle selection or whistle 

extraction methods on classification of whistles produced by common dolphins, short-finned 

pilot whales, and bottlenose dolphins.  It would be beneficial to analyze a dataset of whistles that 

includes all eight of the species present in the training dataset.  

 

The results of this study suggest that selecting and measuring whistles using real-time methods 

may result in correct classification scores that are comparable to, if not better than, pure post-

cruise methods. This study was based on a small selection of whistles from 12 dolphin schools 

and a larger dataset should be examined to confirm these results. Although it is possible that the 

small sample sizes for the STAR 2006 cruise data may be responsible for the extremely poor 

classification scores obtained during Trial C, we are optimistic that the results obtained using 

real-time selection and measurement methods are reasonable.  Examination of a large dataset of 

whistles measured in real-time and post-cruise will provide information on the critical variables 

necessary for correct acoustics species identification and will identify situations in which post-

cruise analysis of whistles may be necessary.  Likewise, a large dataset should be examined to 

determine if the correct classification of whistles is affected by the approach of the ship, and if 

so, the point at which whistles should not be considered useable for classification.  All analyses 

should be conducted by species, and possibly by geographic region.  Improvements in ROCCA 

based on the results of these studies will allow ROCCA to be reliably used to determine acoustic 

species identity of whistling dolphins in real-time applications.  
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TABLES 

 

Table 1. Summary of the 12 dolphin groups included in the analysis and their group species identification based on individual 

whistles measured and selected in real-time (RT) and post-cruise (PC). Groups identified as multiple species did not obtain a single 

majority of classified whistles.  Species codes are as follows: Stenella attenuata (Sa), Stenella longirostris (Sl), Stenella coeruleoalba 

(Sc), Steno bredanensis (Sb), Tursiops truncatus (Tt), Pseudorca crassidens (Pc), and combined common dolphin species Delphinus 

delphis and Delphinus capensis (Cd). 

 

 

      Acoustic Species ID 

Date Latitude Longitude 

# RT 

Whistles 

# PC 

Whistles 

Actual 

Species Trial A Trial B Trial C 

6-Sep-06 8.82 -148.16 2 3 Sl Tt Tt Cd 

6-Sep-06 8.81 -147.98 20 49 Sc Tt Tt Cd 

6-Sep-06 8.75 -147.86 3 11 Sb Sb Cd/Pc/Sb Cd 

7-Sep-06 8.01 -145.55 10 20 Sc Sb Sb Cd 

10-Sep-06 4.75 -135.49 18 37 Pc Pc Pc Pc 

14-Sep-06 1.08 -122.86 13 34 Sc Sc Sc Cd 

16-Oct-06 -2.82 -96.65 6 8 Sc Cd/Pc/Sc Cd Cd 

22-Oct-06 7.71 -97.87 10 9 Sc Cd/Sc Sa Cd 

28-Oct-06 4.48 -112.85 10 1 Sl Sc Cd Cd 

28-Oct-06 4.59 -113.03 12 5 Sl Sl Sl Cd 

31-Oct-06 13.13 -108.68 6 14 Sb Sb Sb Cd/Pc/Sb 

17-Nov-06 16.08 -98.69 8 52 Sa Cd/Sa/Sc/Tt Sa Cd 
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Table 2. Confusion matrix of classification percentages for Trial A - individual whistles selected and measured in real-time. 

Predicted species (1
st
 row) and observed species (1

st
 column) are displayed. The number of whistles included in the analysis for each 

species (n) is given in the last column. ‘NA’ represents species that were not present in the novel data. Correct classifications are 

shown in bold.  The overall correct classification was 33.9%. 

 

 

       % Classified as         

Actual Species 

False 

killer 

whale 

Common 

dolphin 

Rough-

toothed 

dolphin 

Spotted 

dolphin 

Short-

finned 

pilot 

whale 

Striped 

dolphin 

Bottlenose 

dolphin 

Spinner 

dolphin n 

False killer whale 72.2 0.0 16.7 0.0 11.1 0.0 0.0 0.0 18 

Common dolphin NA NA NA NA NA NA NA NA 0 

Rough-toothed dolphin 22.2 0.0 55.6 0.0 11.1 11.1 0.0 0.0 9 

Spotted dolphin 0.0 25.0 0.0 25.0 0.0 25.0 25.0 0.0 8 

Short-finned pilot whale NA NA NA NA NA NA NA NA 0 

Striped dolphin 6.8 18.6 25.4 3.4 1.7 25.4 15.3 3.4 59 

Bottlenose dolphin NA NA NA NA NA NA NA NA 0 

Spinner dolphin 0.0 8.3 8.3 8.3 0.0 29.2 25.0 20.8 24 
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Table 3. Confusion matrix of classification percentages for Trial B - individual whistles selected in real-time and measured in post-

cruise analysis. Predicted species (1
st
 row) and observed species (1

st
 column) are displayed. The number of whistles included in the 

analysis for each species (n) is given in the last column. ‘NA’ represents species that were not observed in the novel data. Correct 

classifications are shown in bold.  The overall correct classification was 36.4%. 

 

 

       % Classified as         

Actual Species 

False 

killer 

whale 

Common 

dolphin 

Rough-

toothed 

dolphin 

Spotted 

dolphin 

Short-

finned 

pilot 

whale 

Striped 

dolphin 

Bottlenose 

dolphin 

Spinner 

dolphin n 

False killer whale 72.2 0.0 11.1 0.0 16.7 0.0 0.0 0.0 18 

Common dolphin NA NA NA NA NA NA NA NA 0 

Rough-toothed dolphin 11.1 22.2 55.6 0.0 11.1 0.0 0.0 0.0 9 

Spotted dolphin 0.0 25.0 0.0 62.5 0.0 12.5 0.0 0.0 8 

Short-finned pilot whale NA NA NA NA NA NA NA NA 0 

Striped dolphin 3.4 16.7 15.3 15.3 0.0 23.7 16.9 1.7 59 

Bottlenose dolphin NA NA NA NA NA NA NA NA 0 

Spinner dolphin 0.0 23.7 0.0 16.7 0.0 16.7 25.0 25.0 24 
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Table 4. Confusion matrix of classification percentages for Trial C -  individual whistles selected and measured in post-cruise 

analysis. Predicted species (1
st
 row) and observed species (1

st
 column) are displayed. The number of whistles included in the analysis 

for each species (n) is given in the last column. ‘NA’ represents species that were not observed in the novel data. Correct 

classifications are shown in bold.  The overall correct classification was 17.7%. 

 

 

       % Classified as         

Actual Species 

False 

killer 

whale 

Common 

dolphin 

Rough-

toothed 

dolphin 

Spotted 

dolphin 

Short-

finned 

pilot 

whale 

Striped 

dolphin 

Bottlenose 

dolphin 

Spinner 

dolphin n 

False killer whale 86.5 8.1 0.0 0.0 2.7 2.7 NA NA 37 

Common dolphin NA NA NA NA NA NA NA NA 0 

Rough-toothed dolphin 16.0 44.0 20.0 0.0 0.0 20.0 NA NA 25 

Spotted dolphin 0.0 92.3 0.0 7.7 0.0 0.0 NA NA 52 

Striped dolphin 0.0 98.3 0.0 0.0 0.0 1.7 NA NA 120 

Short-finned pilot whale NA NA NA NA NA NA NA NA 0 

Bottlenose dolphin NA NA NA NA NA NA NA NA 0 

Spinner dolphin 0.0 100.0 0.0 0.0 0.0 0.0 NA NA 9 
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Table 5.  Correct classification scores for individual whistles measured in real-time and post-cruise for each species. ‘NA’ represents 

species that were not observed in the novel data. 

 

 

 % Correct Classification Scores 

Species Trial A Trial B Trial C 

False killer whale 72.2 (18) 72.2 (18) 86.5 (37) 

Common dolphin NA NA NA 

Rough-toothed dolphin 55.6 (9) 55.6 (9) 20.0 (25) 

Spotted dolphin 25.0 (8) 62.5 (8) 7.7 (52) 

Short-finned pilot whale NA NA NA 

Striped dolphin 25.4 (59) 23.7 (59) 1.7 (120) 

Bottlenose dolphin NA NA NA 

Spinner dolphin 20.8 (24) 25.0 (24) 0.0 (9) 

Overall Correct Classification 33.9 (118) 36.4 (118) 17.7 (243) 
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FIGURES 

 
 

Figure 1.   The flow chart depicts how a dolphin whistle is identified to species using ROCCA. The whistle is selected from the real-

time spectrogram (ISHMAEL, Mellinger 2001) (a), saved as a wave file and sent to ROCCA in Matlab (b). The fundamental time-

frequency whistle contour is extracted and does not always match the actual whistle (c). The contour can be adjusted and extracted 

multiple times until it closely resembles the original whistle (d). 55 variables are measured from the whistle contour, including the 

number of steps and inflection points, (e), and the whistle is classified to species and added to the running tally of species 

identifications for that school (f).  In real-time, the initial whistle extraction was not adjusted to improve its accuracy (d).
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Figure 2.   A good quality whistle is selected for ROCCA (a) and a good contour trace is obtained (b). When a poor quality whistle is 

selected (c), it is more likely that a poor contour trace will be produced that does not fit the selected whistle (d).  
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Figure 3.   Map of the acoustic detections included in this study from STAR 2006.  Sighting number is provided next to the sighting 

location on the map.
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Figure 4.   Plot showing the 30 most important variables in ROCCA’s random-forest classifier, starting with the most important 

variable at the top.  Variables are given on the y-axis, and the relative importance (shown as a Mean Decrease Accuracy after 

variable randomization) is given on the x-axis.  Full description of the variables are given in Appendix A. 
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Figure 5.   A good quality spotted dolphin whistle chosen for ROCCA (a) produced an initial extraction contour with an inaccurate 

end frequency. A second good quality spotted dolphin whistle (b) produced an initial extraction contour with inaccurate maximum 

and end frequencies as well as the number of steps. Despite the high SNR of each whistle, they were misclassified indicating that 

certain whistle characteristics may prove more critical when classifying spotted dolphins. 
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APPENDIX A 

Table displaying the 57 whistle variables measured in ROCCA. Measurements for each variable were used in the random-forest 

analysis to classify each dolphin whistle. 

 

 
Full Name of Variable (in order of 

measurement taken by ROCCA) 

Abbreviated Name 

of Variable Explanation of Variable 

mean duty cycle meandc mean duty cycle (proportion of time signal 'on' vs 'off') 

mean duty cycle of first quarter meandc_quart mean duty cycle of the first quarter of the whistle 

mean duty cycle of second quarter meandc_2quart mean duty cycle of the second quarter of the whistle 

mean duty cycle of third quarter meandc_3quart mean duty cycle of the third quarter of the whistle 

mean duty cycle of fourth quarter meandc_4quart mean duty cycle of the fourth quarter of the whistle 

standard deviatio of duty cycle dc_std standard deviation of the duty cycle 

mean frequency (Hz) mean freq mean frequency (Hz) 

median frequency (Hz) median freq median frequency (Hz) 

standard deviation of the frequency (Hz) std freq standard deviation of the frequency (Hz) 

Spread spread difference between the 75th and the 25th percentiles of the frequency 

quarter frequency quart freq frequency at one quarter of the duration (Hz) 

half frequency half freq frequency at one half of the duration (Hz) 

three-quarter frequency threequart frequency at three quarters of the duration (Hz) 

center frequency centerfreq (minimum frequency+(maximum frequency-minimum frequency))/2 

relative bandwidth rel bw (max freq - min freq)/center freq 

maximum - minimum ratio maxmin maximum frequency / minimum frequency 

beginning - end ratio begend beginning frequency / end frequency  

coefficient of frequency modulation cofm 

 20 equally spaced frequency measurements are taken, then each frequency value is 

subtracted from the one before it. The sum of the absolute values of these differences 

is calculated and divided by 10000. 

beginning frequency beg freq beginning frequency of whistle (Hz) 

end frequency end freq ending frequency of whistle (Hz) 
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Full Name of Variable (in order of 

measurement taken by ROCCA) 

Abbreviated Name 

of Variable Explanation of Variable 

minimum frequency min freq minimum frequency of whistle (Hz) 

maximum frequency max  maximum frequency of whistle (Hz) 

frequency range range maximum frequency - minimum frequency of whistle (Hz) 

duration duration duration of whistle (seconds) 

harmonics harms binary variable: 1=harmonics are present, 0=harmonics are absent 

steps steps 

number of steps in the whistle (a step is defined as having a 10% or greater increase 

or decrease in frequency over 2 contour points) 

inflections inflect 

number of inflection points in the whistle (changes from positive to negative or 

negative to positive slope) 

up down up dwn 

number of inflection points in the whistle that go from positive slope to negative 

slope 

down up dwn up 

number of inflection points in the whistle that go from negative slope to positive 

slope 

up flat up flat number of times the slope changes from positive to zero 

down flat dwn flat number of times the slope changes from negative to zero 

flat down flat dwn number of times the slope changes from zero to negative 

flat up flat up number of times the slope changes from zero to positive 

step up  step up number of steps that have increasing frequency 

step down step dwn number of steps that have decreasing frequency 

maximum delta max delta maximum time between inflection points 

minimum delta min delta minimum time between inflection points 

maximum - minimum delta ratio maxmin delta max delta/min delta 

mean delta mean delta mean time between inflection points 

standard deviation delta std delta standard deviation of the time between inflection points 

median delta median delta median of the time between inflection points 

mean slope mean slope overall mean slope 

mean positive slope mean pos mean positive slope 
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Full Name of Variable (in order of 

measurement taken by ROCCA) 

Abbreviated Name 

of Variable Explanation of Variable 

mean negative slope mean neg mean negative slope 

mean absolute mean abs absolute value of the mean of the slope 

positive - negative slope ratio posneg positive slope/negative slope 

percent up perc up percent of the whistle that has a positive slope 

percent down perc dwn percent of the whistle that has a negative slope 

percent flat perc flat percent of the whistle that has zero slope 

beginning sweep begsw 

categorical variable: 1=beginning slope is positive, -1=beginning slope is negative, 

0=beginning slope is 0 

beginning up begup binary variable: 1=beginning slope is positive, 0=beginning slope is negative 

beginning down begdwn binary variable: 1=beginning slope is negative, 0=beginning slope is positive 

end sweep endsw 

categorical variable: 1=ending slope is positive, -1=ending slope is negative, 

0=ending slope is 0 

end up endup binary variable: 1=ending slope is positive, 0=ending slope is negative 

end down enddwn binary variable: 1=ending slope is negative, 0=ending slope is positive 

ratio of steps to duration ratio.step.dur number of steps / duration 

ratio of inflection points to duration ratio.inflect.dur inflection / duration 
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APPENDIX B  

The training dataset was created using dolphin whistles from the following SWFSC surveys: HICEAS 2002, PICEAS 2005, 

ORCAWALE 2001, STAR 2000, and STAR 2003 (Rankin et al. 2008).  Methods for whistle selection and measurement are given in 

Oswald et al. (2003).   A random number generator was used to select 35 whistles from each detection to be used in ROCCA’s 

classifier. If a detection contained fewer than 35 whistles, then all whistles were analyzed. A total of 1,997 whistles from 135 unique 

detections were included in the training dataset.  

 

Table 6.  Confusion matrix of classification percentages from the Random-forest analysis using, with predicted species (1
st
 row) and 

observed species (1
st
 column). The number of whistles included in the analysis for each species (n) is given in the last column. 

Correct classification scores are shown in bold.  The overall out-of-bag correct classification is 65%.  

 

       % Classified as         

Actual species 

False 

killer 

whale 

Common 

dolphin 

Rough-

toothed 

dolphin 

Spotted 

dolphin 

Short-

finned 

pilot 

whale 

Striped 

dolphin 

Bottlenose 

dolphin 

Spinner 

dolphin n 

False killer whale 93.4 0.7 1.1 0.4 1.1 2.2 0.7 0.4 272 

Common dolphin 2.4 73.4 1.5 6.6 0.0 11.8 1.0 3.4 594 

Rough-toothed dolphin 18.8 8.3 63.9 0.0 0.0 9.0 0.0 0.0 133 

Spotted dolphin 2.1 12.1 0.3 63.7 0.3 11.8 6.2 3.5 297 

Short-finned pilot whale 31.0 1.4 2.8 4.2 57.7 2.8 0.0 0.0 71 

Striped dolphin 3.3 30.1 4.2 4.5 0.0 53.0 1.8 3.0 332 

Bottlenose dolphin 5.2 15.5 3.2 20.6 0.0 7.7 43.2 4.5 155 

Spinner dolphin 6.0 17.9 6.6 11.9 0.0 13.2 6.6 37.7 151 
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