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ABSTRACT

Mark-recapture techniques are widely used to estimate the size of wildlife
populations. However, in cetacean photo-identification studies, it is often
impractical to sample across the entire range of the population. Consequently,
negatively biased population estimates can result when large portions of
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a population are unavailable for photographic capture. To overcome this problem,
we propose that individuals be sampled from a number of discrete sites located
throughout the population’s range. The recapture of individuals between sites can
then be presented in a simple contingency table, where the cells refer to discrete
categories formed by combinations of the study sites. We present a Bayesian
framework for fitting a suite of log-linear models to these data, with each model
representing a different hypothesis about dependence between sites. Modeling
dependence facilitates the analysis of opportunistic photo-identification data from
study sites located due to convenience rather than by design. Because inference
about population size is sensitive to model choice, we use Bayesian Markov chain
Monte Carlo approaches to estimate posterior model probabilities, and base
inference on a model-averaged estimate of population size. We demonstrate this
method in the analysis of photographic mark-recapture data for bottlenose
dolphins from three coastal sites around NE Scotland.

Key words: mark-recapture, model selection, model averaging, Bayesian analysis,
Markov Chain Monte Carlo, population size.

Mark-recapture methods are well established for estimating the abundance of
wildlife populations. Conventionally, marking or tagging is used to uniquely
identify individuals in successive capture samples, and mark-recapture models use
information on the recapture rate to estimate population size (Seber 1982). The
conventional approach of physical capture and marking has also been generalized to
other types of individual detection, greatly increasing the range of species that are
amenable to mark-recapture population analysis. For cetaceans, photographic
identification using natural markings (e.g., Wilson et al. 1999), or individual
recognition from microsattelite genotypes (e.g., Palsbøll et al. 1997), have increased
the utility and application of the mark-recapture approach. However, despite these
practical developments, considerable difficulties remain in the application of mark-
recapture methods to reliably estimate cetacean abundance.

Population estimation with mark-recapture depends crucially on the model that is
used. There is a wide array of mark-recapture models (Chao 2001), and the choice of
which to use depends on matching characteristics of the sample data to the inherent
assumptions made by each model. This is particularly important for populations that
are sampled using non-conventional mark-recapture approaches, where randomized
or predetermined sampling designs are often not feasible, and sampling is more
opportunistic. One consequence of such non-standardized sampling is that animals
are more likely to be captured in some locations and times than others, inducing
heterogeneity in capture probabilities that violate the standard assumptions of
conventional mark-recapture models (Seber 1982, Hammond 1986). In the case of
wide-ranging cetacean populations, much of the heterogeneity may be introduced by
the movement of individuals beyond the range of single study areas, and by
individual differences in these ranging patterns (Hammond 1986). A more
fundamental problem may also occur when it is impractical to sample throughout
the population’s entire range, namely that a substantial proportion of the population
may remain unavailable for capture, leading to negatively biased population
estimates (e.g., Hammond 1986, Whitehead et al. 1986, Hammond et al. 1990).

We propose an approach to address these problems by using a set of spatially
discrete study sites to more explicitly account for movement patterns and allow
sampling to penetrate farther into the population. Lists can then be compiled
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containing the identities of all individuals seen in each study site. The ‘‘overlap’’ of
individuals between these study site lists can then be treated as recaptures, which
are spatially rather than temporally ordered. However, with opportunistic sampling
designs, study sites may be located due to logistical convenience rather than by
design, and it may be necessary to model dependencies between samples due to
geographic distance effects. For example, two sites close together are more likely to
get dependent overlap of individuals than will sites far away. Such dependence
among samples leads to bias of mark-recapture estimators derived under the
assumption of independence (Chao 2001). In such cases, the fundamental
relationship between the recapture rate and the number of undetected animals is
likely to be unclear and non-linear. Unbiased estimates of population size therefore
require a modeling approach that can account for dependencies of this kind.

Our approach is to use log-linear models (e.g., Fienberg 1972, Cormack 1989) for
modeling dependencies between capture samples, allowing different hypotheses
about dependencies to be represented as alternative models (e.g., King and Brooks
2001). Assessing the sensitivity of population estimates to model selection, and
quantifying model selection uncertainty, therefore represent important components
of inference (Buckland et al. 1997). This is especially important in non-
conventional and opportunistic mark-recapture studies, where study design has
not been tailored to suit a specific model. We therefore present a Bayesian
approach (e.g., Madigan and York 1997, King and Brooks 2001) for model selec-
tion based on posterior model probabilities, and show how inference about
population size can be based on a model-averaged probability distribution. We
demonstrate this method in the analysis of photographic mark-recapture data for
bottlenose dolphins (Tursiops truncatus) from multiple sites in the coastal waters
around NE Scotland.

METHODS

We consider the situation where animals in a closed population are sampled at
a number of S spatially discrete study sites, in such a way that the individuals
sampled in each site can be uniquely identified. A list can then be compiled for each
study site, containing the identities of all individuals identified in each site. The
aim is to estimate the size of this closed population based on the overlap of these
lists, representing reidentification of individuals across sites. We describe the
development of this approach by means of a hypothetical design with S ¼ 3
sampling sites. This is the minimum number of sites required to identify
dependencies between lists, but this approach can be logically extended to include
more study sites as required.

Overlap of identification lists between sites can be conveniently represented in
a contingency table (e.g., Dellaportes and Forster 1999), where the C¼ 2S cells of
the table refer to discrete categories formed by combinations of the study areas,
which serve as classifying factors. If an individual cell is denoted by i¼ (1, . . . , C),
then the corresponding cell count, ni, denotes the number of individuals that appear
in each combination of study areas. For each study site, two levels are possible—
either seen (1) or not seen (�1). With three sites there are therefore C¼ 23¼ 8 cells
describing the discrete classification of individuals in the population (e.g., Table 1).
The population estimate, N, can then be simply derived as the total sample size of
the table:
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N ¼
X

ni ð1Þ

The problem here is that we only observe the counts for seven of these cells (i¼
1, . . . , 7), with the missing cell count, n8, denoting the number of missed animals
that were not identified in any of the sites. The population estimate therefore
requires a predicted value for the missing cell, n8. Underlying this prediction are
models of the count data and the parameters generating them, not just for the
observed data, but the complete set of observed and unobserved counts n1, . . . , n8.
In particular, we adopt log-linear models to model the relationships between the
cells in the table, and predict an estimate into the missing cell.

We assume that the cell counts ni are independent Poisson random variables with
mean li, and we model the logarithm of the Poisson mean to be an additive
regression function of study area effects:

logðliÞ ¼ b0xi0 þ b1xi1 þ b2xi2 þ b3xi3 þ b4xi1xi2 þ b5xi1xi3 þ b6xi2xi3 ð2Þ
where b is the vector of unknown parameters to be estimated and the xi’s are
indicator variables for the study area classifying factors in the design of the
contingency table (e.g., Dellaportes and Forster 1999). Specifically, xi0¼ 1 for all i,
and b0 therefore corresponds to an overall mean of the counts on the log-scale. The
indicators xi1, xi2, xi3 take values of either 1 or�1 according to the attribute (1¼
seen, �1 ¼ not seen), for study areas 1, 2, and 3 respectively (e.g., Table 1). The
corresponding parameters, b1, b2, b3, therefore represent the main effect of each
study area on the overall mean b0, describing the difference between the average of
the li’s for cells relating to each study site, and the average of all li’s. The terms
containing products of any two of these indicators define two-way interaction
effects, with b4, b5, b6 describing the strength and direction of effects from pairs of
study sites 1:2, 1:3, and 2:3 respectively. To ensure that all parameters in this model
are identifiable, a saturated log-linear model including a three-way interaction
between all study sites cannot be included in the model (King and Brooks 2001).

Table 1. A contingency table for the multisite photographic identification data of
bottlenose dolphins for three study sites in the coastal water of NE Scotland. The cell counts
refer to the number of individuals with long-lasting natural markings that appear in each i¼
1, . . . , 8 distinct combination of study sites, specified through study site indicators, xi1, xi2, xi3,
for sites 1, 2, and 3, respectively. These indicators take values of 1¼ identified, and�1¼not
identified, in each of the three study sites.

Cell, i Cell count, ni

Study site indicators

xi1 xi2 xi3

1 1 1 1 1
2 16 1 1 �1
3 3 1 �1 1
4 35 1 �1 �1
5 2 �1 1 1
6 2 �1 1 �1
7 16 �1 �1 1
8 ?? �1 �1 �1
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Inclusion of a three-way interaction would add an extra parameter, with a total of
eight parameters in the vector b exceeding the number of observed cells.

This general model can be further simplified by omitting one or more of the
parameters corresponding to interactions between study sites. However, interaction
terms may express real features such as geographic distance effects and, therefore,
the inclusion of some, or all, of these interactions may well be warranted. We
therefore consider a suite of possible alternative models, differing in the inclusion of
different combinations of two-way interaction effects. All models included the level
of the counts (b0), and the main effects for each study site (b1þ b2þ b3), to allow
for differential observation effort and sightings frequencies at the different sites. We
follow the approach of Kuo and Mallick (1998) for expanding the regression
equation to incorporate all possible subsets of interaction effects (b4, b5, b6) by
adding indicator variables as parameters. This involves the introduction of a vector
dn of n¼ 3 binary indicator variables, to switch each of the three possible two-way
interaction variables either in or out of the composite model depending on their
relevance to the observed data:

logðliÞ ¼ b0xi0 þ b1xi1 þ b2xi2 þ b3xi3 þ d1b4xi1xi2 þ d2b5xi1xi3 þ d3b6xi2xi3

ð3Þ
Consequently, there are 23¼ 8 models of interest corresponding to the inclusion or
exclusion of the three interaction terms in different combinations:

(1) d1 ¼ 0, d2 ¼ 0, d3 ¼ 0 (no interactions)
(2) d1 5 1, d2 ¼ 0, d3 ¼ 0 (1:2 interaction only)
(3) d1 ¼ 0, d2 5 1, d3 ¼ 0 (1:3 interaction only)
(4) d1 ¼ 0, d2 ¼ 0, d3 5 1 (2:3 interaction only)
(5) d1 5 1, d2 5 1, d3 ¼ 0 (1:2 þ 1:3)
(6) d1 5 1, d2 ¼ 0, d3 5 1 (1:2 þ 2:3)
(7) d1 ¼ 0, d2 5 1, d3 5 1 (1:3þ 2:3)
(8) d1 5 1, d2 5 1, d3 5 1 (1:2þ 1:3 þ 2:3)

There are now two inferences of interest in this variable selection problem. First
we are interested in identifying suitable log-linear models from this suite of
candidates, and second, we are interested in producing estimates of population size
and associated uncertainty under these models. We adopt a Bayesian approach to
fully quantify both parameter and model uncertainty. Bayesian inference is
probabilistic, and is based on the conditional ‘‘posterior’’ probability distribution of
unknown parameters given the data (Gelman et al. 1995). However, to calculate
these conditional probabilities, a joint probability distribution must first be
specified to describe the relationships between all unknowns and the data.
Therefore, having specified the Poisson probability model (the likelihood) that
links the unknown parameters to the data, we must specify a prior probability
distribution for each of the unknown parameters, and model forms.

Because the counts are modeled on the log scale, the overall mean level of the
counts, b0, can be assigned a Normal prior distribution, with mean zero and high
variance (e.g., b0 ; N(0, 100)). With a large variance this prior will be vague in the
sense that it is essentially flat in the region of likely values for this analysis, and is
therefore expected to have minimal effect on the analysis. In the absence of relevant
prior information, the main and interaction effects can also be specified as Normally
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distributed about zero with a common but unknown variance, r2 (e.g., Dellaportes
and Forster 1999, King and Brooks 2001). Prior specification therefore only re-
quires a prior to be set on the variance parameter r2. In order to allow either
positive or negative non-zero effects to emerge, we let prior knowledge about this
variance be vague by additionally specifying a hyper-prior distribution for prior r2:

b1;...; 6 ; Nð0;r2Þ ð4Þ
r2 ; G21ðc; dÞ ð5Þ

where G(c, d) denotes a gamma distribution with mean c/d and variance c/d2. To
examine the sensitivity of inference to the priors assigned to these effect terms, we
adopt three different hyper-prior distributions for r2: G�1(1,1), G�1(0.1,0.1),
G�1(0.01,0.01).

Model uncertainty is incorporated into inference by specifying a prior dis-
tribution across the candidate models, through the specification of priors on the
three indicator variables. These indicators are assigned prior distributions such that
the prior probability of including any two-way interaction in the model was 0.5:

d1; d2; d3 ; Bernoullið0:5Þ ð6Þ
A uniform prior across models is thus specified in terms of the eight discrete
patterns of inclusion or exclusion of each of the three interaction terms through the
indicator variables.

Having completed the specification of the joint probability distribution for this
model, we adopt Markov chain Monte Carlo methods (MCMC; e.g., Brooks 1998)
to sample the marginal posterior distributions of interest. In particular, we use the
Gibbs sampling MCMC method (Casella and George 1992), which has been shown
to be a simple yet versatile method for sampling from multivariate distributions.
Gibbs sampling from this model can be implemented using the WinBUGS
software (Lunn et al. 2000, Ntzoufras 2002) to produce a sequence of sampled
values from the posterior distribution of log-linear parameters and derived
population size for each of the eight model formulations. For the full model with
indicator variables, the proportion of iterations in which a particular model
formulation is selected can be monitored and used to provide an estimate of the
relative probability of each model. When sampling simultaneously from this joint
model space, estimates of population size are composed of MCMC samples from
different models, with the proportion of samples originating from each model
corresponding to the relative model probabilities (Godsill 2001). Population
estimates will therefore be model-averaged in the sense that they are weighted by
these model probabilities.

An Example: Multisite Photo-identification of Bottlenose Dolphins
Around NE Scotland

To demonstrate this method, we analyzed photographic identification data for
bottlenose dolphins collected from three study sites in the coastal waters around NE
Scotland (Fig. 1). These sites, denoted 1, 2, and 3, each covered between 25 and 100
km2, and were separated by minimum swimming distances of approximately 60
km between sites 1 and 2, 240 km between 2 and 3, and 300 km between 1 and 3.
These sites were not randomly or equally spaced, but took advantage of existing
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photo-identification studies (1 and 3), and dolphin watching activities (2). Dolphin
identification photographs were collected during boat-based surveys that were
conducted over a five-month period between May and September 2001. The
population was assumed to be closed to births, deaths, and migration over this
relatively short period, an assumption that is reasonable for this isolated population
of relatively long-lived individuals (Wilson et al. 1999, Parsons et al. 2002).
Logistics and budget prevented these surveys from being conducted in a coordinated
strategy across sites, but rather surveys were conducted opportunistically in all
three sites over the same simultaneous five-month period. The survey methodology
in these sites was targeted to cover areas known to be used by dolphins, in order to
maximize the number of dolphin encounters. Canon digital SLR cameras, and 35-
mm SLR cameras with color film were used to photograph as many individuals
as possible during each encounter. Photographic data from each of the three sites
were analyzed together at a central location (Lighthouse Field Station, University of
Aberdeen), where a long-term photographic catalog of individual dolphins is
maintained. The analysis involved grading all images separately for both photo-
graphic quality and individual distinctiveness. Individual identifications were then
assigned to only high-quality images of distinctive individuals. Full details of the
photographic analysis can be found in Wilson et al. (1999).

In total, 1,770 high quality identification photographs were taken, resulting in
the identification of 75 different individual dolphins with ‘‘long-lasting’’ marks

Figure 1. A map of Scotland illustrating the locations of the three coastal study areas 1,
2, and 3, marked as shaded ellipses, where bottlenose dolphin photo-identification surveys
were conducted.
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(e.g., Wilson et al. 1999). The three study sites were sampled to different extents.
Most (1,585) of the high-quality photographs were taken in site 1, with 66 in site
2, and 119 in site 3, resulting in the identification of 54, 22, and 21 different
individuals in each of these sites, respectively. The overlap of individuals between
sites is represented as a contingency table (Table 1). This overlap represents
recaptures of individuals in a mark-recapture context, with the study site lists
representing capture ‘‘occasions’’ defined by space instead of time.

For each of the three different prior specifications for the model parameters, the
Gibbs sampling procedure was run for 100,000 iterations following a burn-in period
of the same length. Inference about log-linear parameters was relatively insensitive to
changes in the prior for the variance (Table 2). For all three priors used, the estimated
main effect for each of the study sites (b1, . . . , 3) reflected the number of individuals
identified in each site, with largest estimated effect attaching to study site 1 and the
smallest estimated effect for study site 3. Estimates of the interaction effects reflected
the geographical proximity of the study sites, with an estimated negative interaction
(b5) between the most geographically separated sites (1 and 3), and a positive inter-
action (b4) between the two closest sites (1 and 2). In contrast, there is little evidence
for a strong interaction between sites 2 and 3, with the posterior distribution for b6

centered close to zero.
Inference about model selection was also insensitive to changes in the prior for

the variance of the model parameters, with the same qualitative order of model
probabilities and very similar quantitative values (Table 3). The strong negative
interaction between the geographically distant study sites (1:3 interaction) had
a high probability of remaining in the model, with a probability of 0.94, 0.95, and
0.95 for models including this interaction term for prior specifications 1, 2, and 3
respectively. However, there was uncertainty about the best model for inference.
Relatively high posterior model probabilities were estimated for both the model
with only the 1:3 interaction and the model in which the negative 1:3 interaction
was combined with the positive 1:2 interaction. Moderate posterior probability was
assigned to the model incorporating all three of the interaction effects, but only low
or negligible probability was estimated for models without the 1:3 interaction.

Inference about the size of the population with long-lasting marks was highly
dependent on the chosen model, but remained insensitive to changes in the prior for
the variance. Models with the strong negative 1:3 interaction generally produced
lower estimates of population size than models not including this effect,

Table 2. Estimates of log-linear model parameters for the full model incorporating each
possible main effect and interaction term. Estimates are presented as the mean (standard
deviation) of the marginal posterior distribution for each parameter, under three different prior
specifications for the variance r2 of the effect parameters b1, . . . , 6. Prior 1 uses r2 ; G�1(1, 1);
prior 2 is r2 ; G�1(0.1, 0.1); and prior 3 is r2 ; G�1(0.01, 0.01).

Term Parameter Prior 1 Prior 2 Prior 3

Overall mean b0 1.75 (0.28) 1.80 (0.26) 1.80 (0.25)
Main effect site 1 b1 �0.04 (0.22) �0.02 (0.21) �0.01 (0.21)
Main effect site 2 b2 �0.69 (0.19) �0.65 (0.18) �0.64 (0.18)
Main effect site 3 b3 �0.74 (0.26) �0.69 (0.24) �0.67 (0.24)
1:2 interaction b4 0.27 (0.29) 0.25 (0.26) 0.24 (0.25)
1:3 interaction b5 �0.68 (0.29) �0.65 (0.26) �0.65 (0.26)
2:3 interaction b6 �0.03 (0.27) �0.01 (0.24) �0.01 (0.24)
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demonstrating the consequences of ignoring this negative interaction. Conversely,
models that included the positive 1:2 interaction generally produced higher
estimates of population size than the corresponding models with this term absent.
These between-model differences, along with the uncertainty about the choice of
model, were reflected in the posterior estimates of population size produced by
averaging across all candidate models (Table 3). The model-averaged estimate of
population size of 85 (95% probability interval ¼ 76–263) can be viewed as
a compromise estimate, which shrinks the estimates from the individual models
towards a common value. This compromise is weighted, with the magnitude and
directionality of this shrinkage relating to the relative model probabilities and their
associated population estimates. The model-averaged 95% probability interval was
generally wider than the interval for individual models, as this estimate was
obtained by sampling across all candidate models and therefore accounted for model
uncertainty. However, this model-averaged 95% probability interval did not cover
the widest interval of all models combined, because little posterior probability was
assigned to the models with very high upper bounds, and therefore the posterior
distribution for population size was sampled from these models on only a small
proportion of iterations.

DISCUSSION

This example demonstrates the utility of this multisite approach for estimating
the size of wide-ranging cetacean populations. By using multiple study areas from
throughout the population’s range, and by estimating geographical dependencies
between study sites, we can directly address the problems caused by wide-ranging
and heterogeneous movement patterns, when animals are more likely to be
encountered in some areas than others. This sampling method therefore provides

Table 3. Posterior model probabilities, P (to two decimal places), and summary statistics
for population size of dolphins possessing long-lasting markings, N. Estimates are presented
for eight log-linear models corresponding to the inclusion of different sets of interaction
terms between study sites 1, 2, and 3, along with an estimate of population size averaged
across all models. Data are presented for the posterior median (M) and the 95% probability
interval (PI) of values encompassing 95% of the posterior density, under the three different
prior specifications. Prior 1 uses r2 ; G�1(1, 1); prior 2 is r2 ; G�1(0.1, 0.1); and prior 3
is r2 ; G�1(0.01, 0.01).

Model

Prior 1 Prior 2 Prior 3

N N N

P M 95% PI P M 95% PI P M 95% PI

No interaction 0.00 113 92–151 0.00 112 92–149 0.00 111 91–148
1:2 0.04 211 126–473 0.03 206 123–467 0.03 205 123–467
1:3 0.34 83 76–99 0.33 83 76–99 0.34 83 76–99
2:3 0.00 111 91–149 0.00 110 90–147 0.00 109 90–146
1:2, 1:3 0.32 93 77–179 0.33 91 77–165 0.32 91 77–162
1:2, 2:3 0.02 279 135–1,087 0.01 263 130–1,013 0.01 262 129–999
1:3, 2:3 0.17 81 75–96 0.17 81 76–96 0.17 81 76–95
1:2, 1:3, 2:3 0.11 90 76–270 0.12 90 76–221 0.12 90 76–207
Average — 85 76–263 — 85 76–221 — 85 76–224
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an alternative to the logistically difficult approach of surveying across the full
range of the population. Our model-averaged estimate for population size in this
example of around 85 (95% probability interval ¼ 76–263) is very similar to the
maximum likelihood estimate of 80 (95% confidence interval ¼ 66–113) for the
number of animals with long-lasting marks in this population produced by
Wilson et al. (1999), who employed a rigorous and standardized survey
methodology and a complex mark-recapture model that allowed for individual
heterogeneity. The multisite approach that we have introduced allows us to
produce similar estimates when survey effort is more opportunistic, and limited to
a number of geographically discrete sites. By estimating geographical de-
pendencies between sites, this method enables useful population estimates to be
obtained from data collected from surveys located for practical convenience rather
than by random design.

Alternative mark-recapture models do exist for the situation when captured
individuals can be categorized into one of multiple states, where state could refer to
a geographical site. Darroch (1961) proposed a ‘‘stratified Petersen’’ estimator
where marking and recovery can be stratified by both space and time (e.g., Schwarz
and Taylor 1998). However, application of this estimator to geographical strata
requires coordinated capture and recovery periods in multiple sites, which may not
be possible when making use of opportunistic cetacean photo-identification effort
that cannot easily be co-ordinated across sites. Additionally, this approach is
a stratified version of the simple Lincoln-Petersen estimator (Seber 1982), which
does not account for correlations between capture and recapture probabilities that
may exist through geographical dependencies (Schwarz and Taylor 1998). More
recently developed ‘‘multistrata’’ mark-recapture models (e.g., Brownie et al. 1993,
Schwarz et al. 1993) allow movement to be modeled directly through the
estimation of transition probabilities between strata, which can be geographical
sites. However, estimation of transition probabilities using this approach also
requires coordinated sampling efforts at all sites over a series of survey periods.
Additionally, such multistrata mark-recapture approaches are primarily intended to
estimate transition probabilities between states and capture probabilities of animals
within each state, but not population size. Using such methods, it may be possible
to use state-specific capture probabilities to estimate abundance of animals in each
study area strata at a particular time (e.g., Whitehead 2001), but this falls short of
an estimate of population size. This is particularly true when the study areas cover
only a very small part of the total population’s range, and therefore individuals can
also transit to unobserved areas. In contrast to these methods, the multisite mark-
recapture approach that we have introduced is directly focused on producing
estimates of population size from opportunistic data collected simultaneously in
multiple sites. Rather than requiring a complicated sampling design, our approach
is based on established methods for the analysis of simple contingency tables
(Fienberg 1972), enabling log-linear models to account for dependencies between
geographical sites.

The practicality of this multisite approach is enhanced by the adoption of modern
Bayesian statistical approaches. Bayesian methods have been repeatedly advocated as
well suited for the analysis and communication of uncertainty in ecological data
analysis (Ellison 1996, Wade 2000, Link et al. 2002). Here we have demonstrated
how this utility extends to model determination, which can be based directly on the
probability of competing models, estimated using MCMC methods (e.g., Kuo and
Mallick 1998). However, because inference about population size can be very
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sensitive to the choice of log-linear model, emphasis should be placed on accounting
for model-selection uncertainty (Buckland et al. 1997), especially where study
design has not been tailored to suit a specific model. The Bayesian MCMC approach
also provides a straightforward framework for incorporating model selection
uncertainty directly into inference through model averaging. The model-averaged
estimate of population size communicates the full extent of the uncertainty from
both sparse data and model selection choices, which likely explains the considerably
larger 95% probability intervals from our Bayesian estimate compared to the 95%
confidence intervals from the single model employed by Wilson et al. (1999). All
the analyses presented here can be implemented using the freely available
WinBUGS software (Lunn et al. 2000, Link et al. 2002, Ntzoufras 2002), and
program codes to perform these analyses can be obtained from the primary author.

There are certain practical limitations to the utility of this multisite mark
recapture approach. The production of unbiased population estimates using this
approach requires validation of the usual set of closed population mark-recapture
assumptions (Hammond 1986). Notably, although the multisite method will
account for much of the heterogeneity in capture probabilities due to movement,
individuals will likely posses inherently different movement and capture proba-
bilities that are not completely captured by the model. Several other mark-recap-
ture approaches have been proposed for modeling such individual heterogeneity
(Chao 2001), however these approaches generally model heterogeneity while
ignoring sample dependencies. The incorporation of both dependencies and
individual heterogeneity remains one of the most pressing problems in mark-
recapture population analysis. The multisite approach also relies on the assumption
that all animals in the population have some chance of occurring in a sample from
at least one of the sites. That this assumption has been met may often be difficult to
determine, but we suggest they it can be best achieved by careful location of the
sampling sites to cover at least the known ranges of the population. If a population
shifts its range (e.g., Wilson et al. 2004), or as knowledge about a population’s range
changes, study sites can be moved or added to maintain effective penetration of the
sampling into the target population. King and Brooks (2001) have presented
a method to assess the utility of additional data sources for population estimation
from multiple sources. This type of procedure could also prove useful for guiding
survey design to facilitate the monitoring of wide-ranging cetacean populations
using multisite mark-recapture.
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