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We develop a Bayesian capture–recapture model that provides estimates of abundance as well as time-varying and heterogeneous survival
and capture probability distributions. The model uses a state-space approach by incorporating an underlying population model and an
observation model, and here is applied to photo-identification data to estimate trends in the abundance and survival of a population of
bottlenose dolphins (Tursiops truncatus) in northeast Scotland. Novel features of the model include simultaneous estimation of time-varying
survival and capture probability distributions, estimation of heterogeneity effects for survival and capture, use of separate data to inflate the
number of identified animals to the total abundance, and integration of separate observations of the same animals from right and left side
photographs. A Bayesian approach using Markov chain Monte Carlo methods allows for uncertainty in measurement and parameters, and
simulations confirm the model’s validity.
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1. INTRODUCTION

Estimates of changes in abundance are a fundamental re-
quirement of most wildlife conservation and management
programs (Williams, Nichols, and Conroy 2001). Capture–
recapture methodology provides an important tool for esti-
mating key demographic parameters such as survival, but it
can also be used to obtain abundance. In traditional capture–
recapture (Seber 2002), animals are initially captured, tagged,
and then released. On subsequent capture occasions, individuals
are recognized, and new animals are tagged, allowing construc-
tion of a capture history for each. Such parameters as survival
and abundance are then derived from the capture histories. In
the case of species with individually distinct natural markings,
capture can correspond to photographing distinctive features
(Würsig and Jefferson 1990). These photo-identification tech-
niques are especially useful in situations where data must be
collected nonintrusively to monitor the status of populations.

A difficulty with capture–recapture is that individuals may
have differing catchabilities, manifesting as heterogeneous
and time-varying capture probabilities (Chao 1987; Hammond
1986). The chance of observing an animal at a particular point
in time and space also depends on the effort expended. But ef-
fort may be unimportant as long as each animal has an equal
chance of capture at some point in its range during a sam-
pling period. One effect of capture heterogeneity is to produce
negatively biased estimates of abundance (Pollock, Nichols,
Brownie, and Hines 1990; Cormack 1972), because an ani-
mal with a higher capture probability will be more likely to
be caught on the first occasion, resulting in a decreased average
capture probability on the second occasion and an underesti-
mate of the total marked population. If the individual capture
probabilities are uncorrelated between sampling periods, then
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no bias is expected (Pollock et al. 1990), but it seems unlikely
that the individual capture probabilities remain constant over
time. Heterogeneity may also result in biased estimates of sur-
vival probability (Pollock et al. 1990).

Heterogeneous capture probability is usually considered a
nuisance variable that must be estimated to obtain unbiased es-
timates of other parameters. However, the underlying causes
of innate heterogeneous capture probabilities are not well un-
derstood and may be of interest, because they may provide in-
sight into individual differences in range use, feeding strategies,
or other behaviors. They may arise from variable responses to
capture (Hammond 1990), social structuring within the popu-
lation (Wilson 1995), nonoverlapping individual ranges (Wil-
son 1995), or temporary migration from the study area (White-
head 2001a). Sampling methods themselves may introduce
heterogeneity, and as such, the estimation of unequal cap-
ture probabilities may facilitate the development of improved
sampling techniques. Estimates of survival probability may
be biased by such unequal capture probabilities (Buckland
1982, 1990), although the effect may be small (Carothers 1979).
Methods for dealing with heterogeneous capture include fitting
specialized closed population models (Otis, Burnham, White,
and Anderson 1978), jackknife (Burnham and Overton 1979)
and coverage estimators (Chao, Lee, and Jeng 1992), modified
trapping design (Pollock et al. 1990), stratification of estimates
by covariates such as age or sex (Seber 2002), the use of co-
variates (Huggins 1989), selective analysis of capture histories
(Hammond 1990), and the use of beta-binomial models (Do-
razio and Royle 2003), logit models (Coull and Agresti 1999;
Pledger 2000), and Rasch models (Fienberg, Johnson, and
Junker 1999). Heterogeneity in survival also may occur. The bi-
ological factors underlying heterogeneity in survival probability
are of interest, because they represent the response of different
individuals to their environment.

Where natural marks are used to identify individuals, those
animals lacking marks are by definition not identifiable (Pol-
lock et al. 1990); for example, distinctive notches on dorsal fins
of cetaceans may be present only on older animals in the popu-
lation. This means that only part of the population is catchable.
But this problem can be dealt with by inflation, using other data
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to estimate the proportion of the sampled population having dis-
tinctive marks (Seber 2002), or by double sampling (Pollock et
al. 1990).

To address the aforementioned issues, we construct a model
incorporating heterogeneity in capture and survival that makes
use of the available data consisting of left-side and right-side
photographic series. Individuals are regarded as captured af-
ter they have been identified by a specific type of dorsal fin
marking, called “nicks,” that are visible in these photographs.
Because these nicks appear on animals only as they mature,
we include a nicking-recruitment process in the model. How-
ever, we lack knowledge of the probability of having nicks and
the rate of acquiring nicks. Rather than adopt vague priors for
these probabilities, we include separate data sources that pro-
vide these quantities. We also make use of the survival and
capture information from the recapture model to obtain an esti-
mate of the population size. Because some priors remain vague,
we assess the effect of prior specification using simulated data.
We apply the method to photo-identification data from a nat-
urally marked bottlenose dolphin (Tursiops truncatus) popula-
tion from the Moray Firth, Scotland. This is the only resident
coastal population of bottlenose dolphins in the North Sea, and
a Special Area of Conservation has been established to pro-
tect these animals in response to the 1992 EC Habitats Direc-
tive (Council Directive 92/43/EEC, Scottish Natural Heritage
1995). The U.K. government needs information on trends in
the abundance of this population to report on the success of this
conservation program to the European Union.

In this article we develop a general framework for estimat-
ing the total dolphin population size by embedding a standard
capture–recapture model within a state-space model that de-
scribes the evolution of population size over time. We begin in
Section 2 by describing the data available. In Section 3 we dis-
cuss implementation of the model. In Section 4 we discuss the
Bayesian approach, including the use of Markov chain Monte
Carlo (MCMC) techniques, the specification of priors, and a
simulation study. In Section 5 we provide the results of our
analysis and discuss the implications for the Moray Firth bot-
tlenose dolphin (Tursiops truncatus) population. We conclude
with discussion of the wider implications of our research and
the utility of our approach for other wild animal populations.

2. DATA COLLECTION AND FORMAT

Between 1990 and 2002, boat-based surveys were con-
ducted both in the inner Moray Firth and along adjacent coasts.
Full details of survey protocols have been provided by (Wil-
son, Thompson, and Hammond 1997; Wilson, Hammond, and
Thompson 1999). The number of trips made varied among
years and areas. Most trips were made between May and Sep-
tember, with each trip encountering one or more groups of dol-
phins. Because the data collection effort in winter was low and
available only for the early years of the study, these data are
excluded from the analysis. Between 1990 and 1999, trips fol-
lowed a fixed route (Wilson et al. 1997), but from 2000 onward,
opportunistic surveys were conducted in an attempt to increase
the number of dolphin groups sighted.

When bottlenose dolphins were encountered, photographs
were taken of their dorsal fins using an single-lens reflux cam-
era with a telephoto lens (Wilson et al. 1999). Both 35-mm

transparency and digital cameras were used during the study,
with all photos subjected to the same strict grading of photo-
graphic quality (described in Wilson et al. 1999). Only high-
quality pictures were used, to minimize errors in identification
(Stevick, Palsbøll, Smith, Bravington, and Hammond 2001;
Forcada and Aguilar 2000).

Individual bottlenose dolphins are identifiable by markings
along the whole of the dorsal fin (see Fig. 1). Such fin marks
have been shown to be of varying persistence and reliability
(Wilson et al. 1999); therefore, we restricted our data set on
those dolphins with nicks to the posterior edge of the dorsal
fin, which have been shown to be relatively permanent and
to accumulate over time. The accrual of individual nicks over
time changes the dorsal edge profile, but reliable identification
can still be obtained if the rest of the dorsal edge remains un-
affected. Estimated nicked proportions are determined from a
separate data set comprising the number of animals encountered
in each trip and the number of those that were nicked.

On each occasion, animals could be photographed from the
left side, the right side, or both sides. Individuals photographed
from one side can be identified at later times from photographs
of either side, because the dorsal trailing edge is visible from
either side. This means that differences in left and right capture
probability can be related to animal behavior and boat differ-
ences and left and right capture probabilities are of potential
use in sampling programs. A total of 13 individuals are only
known from the left side, and another 13 are only known from
the right side. These individuals are included in the calculation
since there is no evidence that they are not members of the pop-
ulation.

Each animal is assigned a unique identification code and a
record made of the date and location it was observed. The ob-
servations of a single animal are represented as a capture history
consisting of a series of 0’s and 1’s, where 1 indicates that the
animal was observed in the corresponding time period and 0 in-
dicates the animal was not observed. The entire data set consists
of a matrix in which each row corresponds to a capture history
for a single animal and each column represents one calendar
year. Separate history matrices are constructed as described ear-
lier for photoidentification series of the left and right sides. In
addition, a bilateral history is constructed from both the left and
right side series in which 0, 1, 2, and 3 indicate that the animal
was unobserved or observed from the left side, right side, or
both sides on each occasion. We denote the capture status for
animal d at time j as hdj , hdj ∈ [0,1,2,3].

3. MODEL CONSTRUCTION

The overall model comprises a series of submodels that re-
late different elements of the observed (and indeed unobserved)
data to common population parameters. We begin with a de-
scription of the component of the model that divides the pop-
ulation into two distinct classes: those animals that are nicked
and thus identifiable and those that are not nicked. Using a stan-
dard capture–recapture model, the size of the nicked population
can be determined and, from this, the total population size can
be determined by estimating the proportion of nicked animals.
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Figure 1. Example of dorsal fin showing nicks to the trailing edge. Insets show the changes in the dorsal fin for this animal over time with
the earliest photograph on the left and the latest on the right. The background image corresponds to the third inset from the right. Apparent
changes in shape of the inset images are the result of differences in camera perspective. The effect of these nicks is to produce a serrated edge,
the whole of which is used to confirm the identity of the animal, rather than just a selected few nicks. Other markings, such as skin lesions, are
not considered reliable enough to be used in this study. Minor changes in some nicks may occur over time, but as long as other nicks on the
dorsal edge remain intact, identification can proceed.

3.1 Modeling the Nicked Population

We begin with the assumption that young animals are ini-
tially unnicked, but that as they mature they will accumu-
late nicks as they increasingly engage in social interactions.
This is a reasonable assumption in light of the social develop-
ment of juvenile bottlenose dolphins (Mann and Smuts 1999;
Haase 2000). The animals can be considered as being recruited
from the unnicked population to the nicked population. Once in
the nicked population, individuals become observable and can-
not return to the unmarked population.

We denote the number of dolphins recruited from the un-
nicked population to the nicked population at time 1 ≤ j ≤ J

as Bj , and the number of nicked animals that survived between
times j − 1 and j as Sj . Thus the nicked population size at
time j is given by Sj + Bj ; that is, the current population com-
prises new recruits and surviving former members. The nicked
population is denoted by Nj = Sj + Bj .

We assume that previously nicked animals survive from time
j −1 to time j with probability θj = exp(α+βj )/(1+exp(α+
βj )), where α denotes a global survival tendency and βj de-
notes a time-varying survival component. Thus the number of
surviving animals, Sj , is given a binomial distribution, so that
Sj ∼ Bin(Sj−1 + Bj−1, θj−1).

We also assume that unnicked animals acquire nicks with
probability ωj , so that the number of newly nicked animals has

a binomial distribution Bj ∼ Bin(Wj−1 − Nj−1, ωj ), where at
time j , Wj denotes the total population and Nj denotes the
nicked population. Given this definition, ωj is the probability
of acquiring nicks and also surviving. We believe that the num-
ber of newly nicked animals is relatively small, however.

We refer to this component of the model as the popula-
tion model. It provides the probability distributions P(Sj |Sj−1,

Bj−1, θj−1) and P(Bj |Wj−1,Nj−1,ωj ).

3.2 Modeling the Total Population

In this case study, the total population size and its variation
over time is the primary statistic of interest, but the total pop-
ulation comprises both nicked and unnicked animals. We can,
however, estimate the size of the total population from the size
of the nicked population using data on the proportion of ani-
mals in each group that have nicked dorsal fins. This is possible
because, although unnicked individuals cannot be reliably iden-
tified over periods of months or years, they are recognizable
over a period of days (see Wilson et al. 1999). This allows us
to count the number of unnicked individuals captured on high-
quality photographs in any one encounter and to estimate the
proportion of nicked and unnicked animals in the group to pro-
vide an inflation factor.

Then the unnicked part of the total population is given by
Wj − Nj . If the probability of an individual having nicks is
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given by υj , then the size of the unnicked population at time
j can be modeled as a negative binomial distribution condi-
tional on the size of the nicked population, so that Wj − Nj ∼
NegBin(Nj ,υj ). This approach allows the use of an indepen-
dent data set to inform the υj , rather than relying on the re-
capture data to estimate this parameter. The negative binomial
distribution is preferred over a binomial distribution, because
the Nj ’s already have been assigned a distribution in the popu-
lation model.

In each time period j , suppose that there are Tj trips, each
observing twji animals for i = 1, . . . , Tj , of which tnji are nicked.
Numerous trips are undertaken each year, and the number
nicked is separately estimated on each encounter. A binomial
distribution then can be used to describe the number of nicked
animals seen per trip, so that tnji ∼ Bin(twji , υj ). Thus the ob-
servations tnji and twji allow us to estimate υj , and thus the total
population size, given an estimate of the nicked population. We
refer to this as the inflation model. It provides the probability
distributions P(Wj |Sj ,Bj ,υj ) and P(tnji |twji, υj ).

3.3 The Observation Model

In any time period, only a portion of the nicked population
is seen. Examination of the data suggests that the left and right
capture probabilities differ at the population level. The prob-
ability that an individual animal would be seen from the left
or right side, s ∈ [L,R], is given by ρjs = exp(δs + εjs)/(1 +
exp(δs + εjs)), where δs denotes a global capture tendency and
εjs denotes a time-varying capture component.

Then the number of nicked animals seen from side s, njs , fol-
lows a binomial distribution, njs ∼ Bin(Nj ,ρjs), where njL =∑

d hdj ∈ [1,3] and njR = ∑
d hdj ∈ [2,3]. We refer to this

model as the observation model. It provides the probability dis-
tributions P(njL|Nj ,ρjL) and P(njR|Nj ,ρjR).

We consider the njL and njR as independent counts. A dol-
phin seen in one year from one side contributes to the prob-
ability of observing that side, and one seen from both sides
contributes to both probabilities. The introduction of capture
probabilities for each side allows the combination of the two
photographic series that otherwise would have been analyzed
separately, because they would be correlated. It is also of inter-
est to estimate these probabilities to assess the capture methods
in use. We include the term εjs to allow for observed differ-
ences between years in observing all dolphins from one side
versus the other. These differences may have arisen from dif-
ferences in boat work.

3.4 The Recapture Model

The population and observation models require estimates of
the parameters α, βj , δL, εjL, δR , and εjR , corresponding to
the survival and capture probabilities. These probabilities can
be obtained from the capture history data. To do this, we cal-
culate the likelihood of the entire capture history matrix, which
is the product of the probabilities associated with each animal’s
individual history, L(hdj ).

To combine the photo-identification series from the left and
right sides into a single bilateral analysis, the model allows dif-
ferent capture probabilities when animals are seen from each
side. The number of animals seen also can differ between the

left and right sides. Other parameters do not depend on the side
from which an animal is observed; for example, the population
size and survival probability of an animal should not depend on
which side is observed. However, the left-side capture proba-
bility for individual animals might be expected to differ from
that of the right side; for example, the animal might be more
likely to approach the boat from one side than from the other.
Dolphins are also well known to have heterogeneous behavior
(Wilson, Reid, Grellier, Thompson, and Hammond 2004).

Thus, to incorporate heterogeneity as well as observation
from two sides, survival and capture probabilities are defined
as logit(φdj ) = α + βj + γd and logit(πdjs) = δs + εjs + ζds ,
where γd denotes a survival effect, ζds denotes a recapture ef-
fect for animal d , s ∈ [L,R] for the left or right side, and
logit(x) = log(x/(1 − x)). The logit function is the standard
choice for binary data.

Note that the heterogeneity effects are not used in the popu-
lation and observation models, because both of these are based
on both the nicked and unnicked populations, and members of
the latter will not have an individual effect parameter. Although
we could adopt a random-effects model to ascribe individual
effects to unnicked animals, this would imply that we believe
the heterogeneity of survival and recapture to be the same in
both the nicked and unnicked populations, which may not be
the case.

The overall probability has components for animals in two
situations. There are nJ animals observed at the final time, and
some nJ ∗ animals last observed at some earlier time and that
might have died or simply are not seen. Each individual history
probability is conditional on the first time that the animal is
seen, j1

d .
Thus the likelihood associated with the histories of n = nJ +

nJ ∗ dolphins is given by

∏

s∈[L,R]

n∏

d=1

J∏

j=1

L(hdjs)

=
nJ∏

d=1

J∏

j=j1
d +1

φd,j−1I (πdjL,πdjR,hdjs)

×
nJ +nJ∗∏

d=nJ +1

hl∏

j=j1
d +1

φd,j−1I (πdjL,πdjR,hdjs)

(

1 − φdhl

+
J∑

j=hl+1

φ̂dj

j∏

k=hl+1

φd,k−1(1 − πdkL)(1 − πdkR)

)

, (1)

in which φdj denotes the survival probability, φ̂dj = 1 − φdj

when j < J and φ̂dj = 1 when j = J , πdjs denotes the recap-
ture probability from animal d observed in time j from side
s ∈ [L,R], j1

d and hl denote the first and last times that individ-
ual d is seen; and I (πdjL,πdjR,hdjs) = (1 − πdjL)(1 − πdjR)

when hdjs = 0, I (πdjL,πdjR,hdjs) = πdjL(1 − πdjR) when
hdjs = 1, and I (πdjL,πdjR,hdjs) = (1 − πdjL)πdjR when
hdjs = 2, I (πdjL,πdjR,hdjs) = πdjLπdjR when hdjs = 3. The
φdj and πdjs parameters are defined only for 1 ≤ j < J −1 and
2 ≤ j < J . The values of nJ , j1

d , and hl are determined from
the capture histories.
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We refer to this model as the recapture model. It yields
the probability P(hdjs |φdj , γd, πdjL,πdjR, ζdL, ζdR). This is
a Cormack–Jolly–Seber model, which has been discussed else-
where (Seber 2002; Lebreton, Burnham, Clobert, and Anderson
1992; Link and Barker 2005).

This completes the model specification. To summarize, we
define a population model that describes the recruitment (ωj )
and survival (θj ) of animals in the nicked population (Nj ). The
relative sizes of the nicked population (Nj ) and total population
(Wj ) are described by the inflation model, which makes use of
observed counts of nicked and unnicked animals. Using the cap-
ture probability (ρjs ) and the observed number of nicked ani-
mals, we estimate the nicked population. Finally, we estimate
the heterogeneous capture (πdjs ) and survival (φdj ) probabili-
ties from the capture histories. Because this is a Bayesian analy-
sis, we also specify priors to the following parameters: S0, B0,
ωj , W0, N0, α, βj , γd , δs , εjs , and ζds . We describe the priors
in detail in the next section.

4. ANALYSIS

In this section we describe the statistical methodology re-
quired to analyze the model described in the previous section.
We adopt a Bayesian approach and describe the prior specifica-
tion and simulation techniques required here. In this modeling
process, we use a Bayesian approach to allow for uncertainty
in measurement and parameters used. The Bayesian approach
allows for simultaneous consideration of all data and models,
allowing for the proper propagation of uncertainty throughout
the model. Identifiability is also less of a concern in a Bayesian
analysis in which prior information is supplied (Gelfand and
Sahu 1999). Moreover, the Bayesian approach has an advan-
tage in that MCMC methods can be used, which greatly simpli-
fies the computation compared with the corresponding classi-
cal tools. The remainder of this section discusses the process of
prior specification and provides details of the implementation.

4.1 Priors

The first stage in the Bayesian analysis is to elicit priors for
each of the model parameters. We do so here by grouping the
parameters according to the component of the model in which
they appear. The priors used and their associated parameters are
summarized in what follows.

The Population Model. The model specifies the distribu-
tion of parameters Sj and Bj in terms of Sj−1 and Bj−1 for
j ≥ 1. Therefore, we need a prior for S0 and B0. Because
they only appear together, we set N0 = S0 + B0 and assign
a Poisson prior N0 ∼ Po(λN). Its mean takes a gamma prior
λN ∼ Gam(.76, .01), with parameters selected to obtain a mean
for the nicked population of 76, as estimated by Wilson et al.
(1999), and a large variance, so that it becomes uninformative
compared with the range of reasonable population values.

Because the recruitment rates of nicked dolphins cannot be
directly estimated from the photo-identification data set, the
priors are parameterized with results from a separate analy-
sis of randomly selected photographs with at least 2 years of
data. Because it is thought that the rate of nicking might be
greater for older animals due to increased social interactions,
estimates are estimated from photographs of individuals that

are first identified as known-age calves. Identification is done
using all attributes, such as fin shape and the presence of le-
sions. Photographs of seven of these animals are available for
estimating the age at which these dolphins are first seen to have
a nick in the dorsal fin. We consider these cases a random se-
lection from the unnicked population, so that the mean num-
ber of nicks per year gives an approximate probability of nick-
ing per year. We set the prior for ωj to be reasonably vague:
ωj ∼ Beta(.0238,1). Although rough, these assumptions give
a crude estimate for the parameter, which is then updated by
the data.

The Inflation Model. The initial population size is assigned
a negative-binomial prior, W0 −N0 ∼ NegBin(N0, υ0). The ini-
tial inflation factor, υ0, is assigned a beta prior, υ0 ∼ Beta(1,1),
which is equivalent to a noninformative uniform prior.

The Recapture Model. The recapture model survival pa-
rameters have independent normal priors N(0, 1.85), and the
capture parameters have independent normal priors N(0, 1.5).
These priors span the range (0,1) on the logit scale. Larger
variances are not used, because these would obtain a U-shaped
distribution on the logit scale.

4.2 Implementation

Once priors are assigned, the full joint distribution can be
determined as the product of the likelihood with the associated
prior distributions. The resulting posterior is complex and high-
dimensional and so inference is obtained in the form of poste-
rior means and variances obtained through MCMC simulation.
We choose to use an implementation in which each parameter is
updated in turn using either a Metropolis–Hastings or a Gibbs
update, depending on the form of the associated posterior con-
ditional distributions. The updating strategy is detailed in the
Appendix. All simulation software is written in FORTRAN 77.
The model was run for 500,000 iterations, and a 50% burn-
in was used. Sensitivity studies and standard diagnostic tech-
niques were used (Brooks and Roberts 1998) to assess model
validity.

4.3 Simulation Study

To test the MCMC code and to demonstrate the utility of the
framework developed earlier, we construct two artificial pop-
ulations, one with homogeneous capture and survival proba-
bilities and the other with heterogeneous capture and survival
probabilities. These populations are constructed using the fol-
lowing procedure. An initial population of animals (n = 130)
is sampled, and a proportion of this initial population is ran-
domly marked as nicked. At each time period in the simulation,
animals are randomly selected to die, some of the unnicked be-
come nicked, and a proportion of the remaining animals are
randomly selected to be observed. For each population, three
simulations are run with differing priors for the ωj and λN para-
meters. The priors are such that the three cases represent vague
priors, precise priors, and very precise priors, but in each case
the means differ from the actual population values. One possi-
ble outcome is that the precise prior simulations track the prior
means more closely than the vague simulations.

The simulations are illustrated in Table 1, which shows the
actual total abundances, the medians of the posteriors for Wj ,
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Table 1. Actual and estimated median total abundances for two artificial populations with 95% HPDI and posterior p values from
three simulations on each with differing priors

A B C

Population Year Wj Ŵj p value Ŵj p value Ŵj p value

1 1990 124 119(99,139) .28 112(97,130) .07 107(90,124) .02
1991 120 125(105,146) .67 118(95,134) .39 114(97,135) .25
1992 114 116(96,135) .54 110(93,127) .30 106(92,123) .17
1993 109 113(95,134) .63 108(92,124) .41 105(90,121) .26
1994 103 111(93,130) .81 106(88,124) .63 103(86,118) .49
1995 97 105(89,125) .86 102(87,118) .74 100(85,114) .62
1996 95 98(84,115) .66 95(81,110) .48 93(81,107) .38
1997 91 99(83,114) .85 96(80,109) .76 95(80,108) .65
1998 89 94(79,110) .73 91(77,105) .56 90(77,103) .52
1999 85 92(77,108) .78 89(75,103) .69 87(75,103) .63
2000 76 82(65,98) .76 79(66,96) .65 79(65,94) .59
2001 70 79(62,99) .84 77(58,95) .79 76(60,95) .75
2002 68 76(55,93) .78 75(56,91) .75 73(58,92) .70

2 1990 124 135(100,178) .71 121(96,159) .42 116(90,149) .26
1991 122 123(90,158) .51 112(87,140) .21 108(84,134) .12
1992 119 114(87,148) .35 105(84,130) .10 101(78,124) .06
1993 111 106(82,138) .34 99(75,121) .11 95(74,117) .06
1994 106 102(76,130) .33 93(75,118) .12 91(68,115) .07
1995 100 96(70,122) .38 91(74,114) .16 88(67,108) .08
1996 93 93(66,119) .48 87(69,109) .26 85(65,105) .16
1997 87 91(67,115) .60 85(68,106) .37 82(62,102) .28
1998 77 79(59,101) .56 76(62,95) .39 72(57,91) .28
1999 74 84(60,108) .80 80(62,101) .75 77(58,97) .62
2000 72 78(57,99) .67 74(58,94) .58 72(55,91) .46
2001 67 71(49,92) .62 69(48,91) .57 66(46,88) .43
2002 64 68(41,91) .59 65(44,92) .51 63(43,88) .44

NOTE: Population 1 has homogeneous capture probability (.75) and survival probability (.95) while population 2 has heterogeneous capture probability (mean, .55; range, .05–.98) and
survival probability (mean, .92; range, .68–.99). The simulations have different priors for ωj and λN . Simulation run A has vague priors [ω ∼ Beta(.0294,1.2368), λN ∼ Gam(.76, .01)],
B has more precise priors [ω ∼ Beta(.0237,1.0), λN ∼ Gam(76,1)], and C has very precise priors [ω ∼ Beta(.9299,39.155), λN ∼ Gam(7,600,100)]. Their means are the same in
each case (.023 and 76), but each differs from the actual population values (.06 and 106).

their 95% highest posterior density intervals (HPDI), and a p

value. The p values are calculated by counting the proportion
of iterations in which the Wj exceeded the true value. Examina-
tion of the results indicate that the median posterior estimates
generally agree with the actual values. The agreement is sat-
isfactory whether or not there is heterogeneity assumed. The
p values are in the range .02–.88, suggesting that the model
works correctly. The posterior p values for the recapture model
coefficients are given in Table 2. The p values for α, δL, and
δR are summarized, and those for the remaining parameters are
summarized as the proportion of p values in each that lie inside
the range .01–.99. Almost all p values are within the range .01–
.99; the only exceptions are the capture coefficients for a small
number of dolphins.

In general, the total population estimates for the homoge-
neous case are slightly greater and the 95% HPDI is narrower
then the heterogeneous case, but all intervals contain the popu-
lation values. The estimates also shrink slightly for the mod-
els with more precise priors. However, the p values in each
case suggest an adequate fit, even though some priors are de-
liberately set to incorrect values. In the case of the recapture
coefficients, there is no apparent difference between the homo-
geneous and heterogeneous models, or with any trend in the
precision of the priors.

5. RESULTS

We obtain estimates of heterogeneous capture and survival
coefficients, variation of capture and survival over time, over-
all survival and capture probabilities, the abundance, and the
trend in abundance. The survival probabilities and capture co-
efficients from the left and right sides are shown in Figure 2 and
Table 3. We can obtain an overall capture probability for the two
sides by calculating exp(δ)/(1+exp(δ)). The mean overall cap-

Table 2. Summary of posterior p values for survival and capture
coefficients for two artificial populations from three simulations

on each with differing priors

Population α βj γd δL εjL ζdL δR εjR ζdR

1 .16 1.00 1.00 .66 1.00 .98 .60 1.00 1.00
.10 1.00 1.00 .59 1.00 .98 .53 1.00 1.00
.08 1.00 1.00 .59 1.00 .98 .48 1.00 1.00

2 .34 1.00 1.00 .17 1.00 .97 .50 1.00 .98
.22 1.00 1.00 .15 1.00 .97 .37 1.00 .99
.23 1.00 1.00 .12 1.00 .97 .39 1.00 .99

NOTE: The populations and simulations are described in Table 1. The p values are calcu-
lated as the proportion of iterations greater than the actual population value. The p values
for α, δL , and δR are shown. Because the remaining parameters are vectors of coefficients,
those p values are summarized as the proportion of p values in each that are found inside
the range .01–.99.
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(a)

(b) (c)

Figure 2. (a) Variation of mean capture coefficients over time for
the left side, εL (−�−) and right side, εR (- - • - - •). The two hor-
izontal lines indicate the global mean capture coefficients, δL (——)
and δR (− − −). On the left vertical axis are the mean left-side het-
erogeneity capture coefficients, ζL and on the right vertical axis are
the mean right-side heterogeneity capture coefficients, ζR . Standards
errors for each coefficient are shown as vertical bars. (b) Variation of
mean survival probability over time. (c) Histogram of mean heteroge-
neous survival probabilities.

ture probability for the left side is .48 (95% HPDI = .29, .68)
and for the right side it is .58 (95% HPDI = .39, .77). Although
this is a small difference, the probability of the right capture
coefficient exceeding the left is .81. Examination of Figure 2(a)
shows that the variation of capture coefficients over time is large
compared with the overall coefficients, and that the left (εL) and
right (εR) coefficients tend to track each other. The probability
of the right capture coefficient exceeding the left varies over
a wide range, .07–.96. This range results from some years in
which the probability tends strongly to the left side (1995 and
2000; probability of observing the left side, .95) or right side
(1998, 1999, 2001; probability of observing the right side, .91).
Finally, the range of the heterogeneous coefficients is compara-
ble to that of the time-varying coefficients.

The mean heterogeneous survival coefficient is not corre-
lated with either of the mean capture heterogeneous coeffi-
cients (right, r = .009; left, r = .022). However, the mean
left and right heterogeneous capture coefficients are correlated
(r = .714), indicating that animals that are more likely to be
seen from one side also are more likely to be seen from the
other side. However, the heterogeneity capture coefficient of the
right side (mean, .56) exceeded that of the left side (mean, .23),
with 85% of animals having higher right coefficients than left

Table 3. Left-side and right-side capture probabilities and survival
probabilities by year

Year Left capture Right capture Survival

1990 1(1,1)

1991 .54(.40, .68) .60(.47, .75) .93(.84, .99)

1992 .74(.59, .86) .75(.60, .86) .98(.94,1.00)

1993 .31(.20, .44) .46(.33, .61) .95(.88,1.00)

1994 .36(.24, .47) .53(.35, .66) .95(.86,1.00)

1995 .42(.27, .55) .71(.56, .88) .94(.86,1.00)

1996 .30(.17, .42) .48(.34, .63) .93(.82,1.00)

1997 .23(.14, .36) .37(.23, .51) .88(.75, .98)

1998 .39(.24, .53) .31(.20, .45) .94(.84,1.00)

1999 .45(.31, .63) .40(.25, .54) .93(.82,1.00)

2000 .24(.14, .36) .57(.40, .72) .96(.88,1.00)

2001 .87(.78, .94) .82(.73, .91) .96(.89,1.00)

2002 .88(.80, .96) .89(.80, .96)

NOTE: For each, the mean and the 95% HPDI limits are given. There is concordance
between the left-side and right-side results. The capture probabilities are more variable
and reach minimums in 1997 and 2000 for the left side and in 1998 for the right side,
but both reach maximums in 2002. Survival reaches a maximum in 1992, declines to a
minimum in 1997, and then rises again in later years.

coefficients. Because this is observed after adjustments for the
overall and time-varying components, it suggests an effect due
to behavior or sampling protocol.

The variation in the capture probability over time is likely
to result from a combination of factors, including variation in
dolphin ranging patterns (see Wilson et al. 2004), weather con-
ditions, and other logistical factors that influence sampling in
different areas. Most notably, sampling protocols were changed
in 2000 specifically to increase the probability of capture. This
change has proven to have been successful in the latter part of
the study, while estimates of the survival probabilities and to-
tal population size remain unaffected. Second, another study
(Wilson et al. 2004) has shown that the ranging pattern of the
population changed in recent years, with some animals spend-
ing more time in the southern part of the population range along
the east coast of Scotland, south of the Moray Firth to St. An-
drews and the Firth of Forth. The effect of this would be to
reduce the capture probability in the core study area in the in-
ner Moray Firth and to potentially increase heterogeneity in
capture probabilities. The more southerly areas also have been
sampled, but the data are more sparse and cover only a small
number of years. Once these histories have become more exten-
sive, we expect that the capture probabilities will become less
variable. Unlike other models, our estimates are also corrected
for individual heterogeneity. Variation in capture probabilities
also might have arisen from heterogeneous effort in space. Al-
though this was not explicitly modeled, we could have stratified
the capture histories by area by including separate capture co-
efficients for each area.

The overall mean survival estimate through the study period
is .93 (standard deviation, .029; 95% HPDI = .861, .979). This
is similar to an earlier maximum likelihood estimate of sur-
vival for the cohort of nicked individuals from this population
first observed in 1990 (Saunders-Reed, Hammond, Grellier, and
Thompson 1999). But our model estimate is slightly lower than
survival estimates from other bottlenose populations of 96.2 ±
.76% in Sarasota Bay, Florida (Wells and Scott 1990), 95.2 ±
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1.50% in Doubtful Sound, New Zealand (Haase 2000), and 95–
99% in the Sado estuary, Portugal (Gaspar 2003). However, this
may be because our study included subadults while the other
studies reported adult survival. Variation in survival probabil-
ity occurs over time [Fig. 2(b); Table 3]. It is of interest that
survival reached a minimum in 1997 but later returned to lev-
els comparable to earlier years. The proportion of iterations in
which the survival for 1997 are above the mean survival for
the remaining years (mean φ = .95; 95% HPDI = .85, 1.00)
is only .08. The apparent low survival in 1997 may be due to
migration, because this is not distinguishable from survival in
the model. It is possible that an emigration event occurred in
1997 and that those individuals have not yet returned. Consid-
erable heterogeneity in survival (range, .77–.97) is observed,
as shown in Figure 2(c). The survival probabilities are not dis-
tributed smoothly, suggesting multimodality. The animals with
a low survival coefficient may have died or migrated. In the
case of migration, this result would indicate that some animals
less consistently reside in the core areas compared with oth-
ers.

Individuals with higher survival coefficients are frequently
those seen earliest in the study. There is little information avail-
able on individuals seen only more recently, and consequently,
their coefficients are close to 0. Some survival coefficients are
more negative, and these correspond to animals that have not
been seen for some time. As time goes on, and in the absence
of a confirmed death or sighting, these coefficients can be ex-
pected to become more negative. However, some animals that
are observed only on a few occasions have negative coefficients.
The estimation of individual survival coefficients means that es-
timation of other coefficients in the model are adjusted for vari-
able survival. The estimation of individual capture probabilities
allows the results to be combined with other individual covari-
ates, such as sex or body size, if these data become available.
Similarly, where individuals differ in their home ranges, indi-
vidual capture or survival probabilities could be related to local
environmental conditions within their range, to prey availabil-
ity, or to water quality.

Estimates of the total population size from bilateral analy-
sis of the left and right photo-identification series and estimates
from unilateral analyses of the left and right sides are shown in
Figure 3(a). These are similar both to the maximum likelihood
estimate of 129 (95% confidence interval = 110–174) for data
collected in 1992 (Wilson et al. 1999) and to a Bayesian mul-
tisite mark recapture estimate of the nicked population of 85
(95% probability interval = 76–263) for data collected in 2001
(Durban et al. 2005). The credible intervals of the abundance
estimates are generally narrower in the bilateral analysis (mean
width, 88.6) than in left-side analysis (mean width, 137.3) and
right-side analysis (mean width, 93.7). Figure 3(b) shows the
prior and mean posterior recruitment probabilities, ωj . It is in-
teresting that higher probabilities occur in 1996 and 2001. This
might be considered to variations in capture probability, but
whereas the capture probability is high in 2001, it remains low
in 1996 [see Fig. 2(a)]. Instead, calculating the probabilities of
the posterior exceeding the prior recruitment probabilities, we
find they are below .5 (range, .04–.44) for all years except 2001,
in which it is .85. The higher recruitment probability in 2001
may be due to an improved protocol in that year that led to the

(a)

(b)

Figure 3. (a) Mean total abundance estimates from a bilateral analy-
sis with 95% HPDI. Also shown are estimates from separate analyses
of left (− − −) and right (· · ·) sides along with associated 95% HPDI
represented by symbols: left, +; right, *. Minimum numbers of ani-
mals known to be alive are indicated by diamonds. (b) Mean posterior
recruitment probabilities, ωj , with 95% HPDI. The prior value is rep-
resented as a dotted line.

identification of previously unrecognized nicked animals. We
consider the rise in 1996 to have insufficient evidence to sug-
gest an increase in recruitment in that year.

Earlier demographic modeling of this population has pre-
dicted that the population is in decline (Saunders-Reed et al.
1999). To examine this, we calculate the statistic [∏J

j=2 Wj/

(Wj−1)]1/(J−1). Values of this statistic >1 indicate an increas-
ing population, whereas values <1 indicates a decreasing pop-
ulation. The mean value is .989 (95% HPDI = .958, 1.02),
and the probability of it being <1.0 is .77. This suggests that
the population may be decreasing, but that the evidence for
a decline is weak. By doing this, we are able to use the full
time series of photo identification data to obtain simultaneous
posterior estimates of the Wj to compare the probability of a
population increase or decrease. In agreement with the earlier
predictive modeling, these data indicate greater probability of a
decline than of an increase. However, because it is likely that
the population is expanding its range (Wilson et al. 2004), the
decline may be confounded with temporary emigration.
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6. DISCUSSION

Changes in the size of wildlife populations are often assessed
by fitting trend models to independent abundance estimates,
but the power of these techniques to detect trends often can
be low (Gerrodette 1987; Taylor, Martinez, Gerrodette, Bar-
low, and Hrovat 2007). Here we use a capture–recapture model
that incorporates an underlying population model and an ob-
servation model. We provide a probability that a population is
in decline or increasing. Using photoidentification data from
this bottlenose dolphin population, we generate the first em-
pirical estimate of trends in abundance for any of the popula-
tions of small cetaceans inhabiting European waters. Because
the methodological changes in sampling likely are absorbed
by the time-varying capture coefficient, the remaining variation
due to individual capture tendencies might reasonably be de-
scribed by the individual capture coefficient. This then allows
exploration of capture and survival relating to individuals rather
than to populations. Information on individual survival could be
important for addressing some management issues; for exam-
ple, individuals differing in their spatial distribution.

By decomposing the capture probabilities into overall, time-
varying, and heterogeneous terms, we find that the time-varying
contribution and heterogeneous variation are comparable in
magnitude, and their variation is greater than that of the overall
term. This information can be used in the design of monitoring
programs by suggesting how effort should be distributed. The
difference in overall left and right capture probabilities might
be interpretable as an artifact of the sampling techniques or of
behavioral effects. However, after allowing for this, the prob-
ability of observing one side also varied over time, with some
years strongly favoring one side or the other. This might be ex-
plained by variation in protocol between years, such as changes
in personnel. The relative sizes of these effects may be of use
in evaluating consistency of protocol over time. Finally, after
allowing for the overall difference and time variation, the het-
erogeneous capture coefficients exhibit a bias to the one side,
possibly due to behavior or protocol. These findings demon-
strate that bilateral decomposition of capture probabilities can
provide useful information.

We decompose the survival probability similarly and we find
it to be unusually low in 1997, suggesting a possible multimodal
heterogeneous survival probability that may be the result of mi-
gration or survival variation. This type of decomposition allows
exploration of such effects in more detail. In particular, the mul-
timodality of heterogeneous survival suggests that the popula-
tion comprises individuals with different strategies, some vis-
iting the core study area more or less often. Ongoing work is
attempting to quantify individual heterogeneity, such as in ex-
posure to sewage contaminated waters and boat-based tourism.
Therefore, this technique could be used to determine whether
exposure to different anthropogenic stressors is related to sur-
vival.

Our model also makes use of priors such as those on ωj that
are not informed by the recapture data set, but make use of in-
formation from other sources. An alternative approach might
be to specify these as informative priors based on expert opin-
ion or tuned to obtain satisfactory results. Our application il-
lustrates how disparate data sources may be combined into a

single analysis. Although the data source for the prior recruit-
ment probability is small and problematic, it is the only one
available. Even when some priors are defined in the simulation
study to incorrect values, the estimates of parameters of interest
remain valid. The posterior probability also adds to the state of
knowledge of this parameter.

Previous use of capture–recapture models with cetacean pho-
toidentification data highlights the potential violation of model
assumptions due to heterogeneity in capture and/or survival
probabilities. This model explicitly accounts for heterogene-
ity and also provides simultaneous estimates of individual sur-
vival and capture probabilities. This can be used both to ex-
plore the biological basis of heterogeneity and to improve sam-
pling programs. The individual survival coefficients also can be
used to explore aspects of biology where correlates are avail-
able; for example, the relationship of survival to age, sex, or
other variables may be of interest. Abundance under the as-
sumption of heterogeneous survival has been estimated by Lee,
Huang, and Ou (2004), whereas individual and time-varying
survival estimates have been obtained using band-recovery
models (Grosbois and Thompson 2005). Other studies have ex-
amined survival by group; for example, Franklin, Anderson,
and Burnham (2002) obtained separate estimates of group-level
survival for males and females using stratification in a banding
study. Although we lack such variables as age and sex, theo-
retically it would be possible to examine individual survival
by sex either as a post hoc comparison or through their inte-
gration into the model itself. For example, survival and cap-
ture could be modeled as logit(φ) = α + βj + γd + τ and
logit(π) = δ + εj + ζd + χ , where τ corresponds to stage-
specific (e.g., young, immature, reproductive female, senes-
cent) survival and χ corresponds to capture probabilities for
various categories (e.g., young, reproductive adult).

Other cetacean studies have examined heterogeneity. White-
head (2001b) obtained an estimate of the coefficient of variation
(CV) for identification from a randomization test of successive
identifications in whale track data. (The CV is also a measure of
capture heterogeneity.) They found that the CV was significant
in one of the two years and that probably depended on the sizes
of the animals being observed. This is not comparable to the
dolphin observations, in which heterogeneity is more likely to
result from differences in animal behavior. In the present study,
we use a likelihood in which heterogeneity of survival and cap-
ture has been incorporated by a logit function. This approach
was described previously (Pledger, Pollock, and Norris 2003;
Pledger and Schwarz 2002) within a non-Bayesian context.
Pledger et al. (2003) classified animals into an unknown set of
latent classes, each of which could have a separate survival and
capture probability. A simplification allows for time-varying
and animal-level heterogeneity. This approach is similar to ours,
but we also integrate a dynamic population model and an ob-
servation model into the estimation process. Goodman (2004)
also implemented a population model in a Bayesian context that
combines capture–recapture data with carcass-recovery data,
but assumes the absence of heterogeneity in capture probabil-
ities. Durban et al. (2005) estimated abundance for the same
population as us, but used a multisite Bayesian log-linear model
and model averaging (King and Brooks 2001) across the pos-
sible models with varying combinations of interactions. Our
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model could be extended to include multiple sites and years
by using a capture–recapture history that includes site informa-
tion and a year–site term in the capture probability expression.
By doing this, we suggest that geographic areas with more data
can be used to strengthen estimates from poorly sampled areas.
This also may account for some individual variation currently
identified as individual capture heterogeneity, because some in-
dividuals may be more closely associated with some areas than
others, and may attenuate a possible confounding of migration
with survival.

We use a separate data set and a negative-binomial model to
inflate the estimate of the proportion of nicked animals in the
samples. Another study (Da Silva, Rodrigues, Leite, and Mi-
lan 2003) obtained an abundance estimate for bowhead whales
using an inflation factor derived from the numbers of good and
bad photographs of marked and unmarked whales. Our analysis
avoids the lack of independence between good photographs and
distinctively marked animals in the photographs that might in-
validate the estimate of variance in the inflation factor. Other
studies avoid this issue by including only separately catego-
rized good-quality photographs (e.g., Wilson et al. 1999; Read,
Urian, Wilson, and Waples 2003). However, independent es-
timates of inflation, when available, such as in our study, are
preferred.

We do not know of other cetacean studies that combine
photo-identification series of the left and right sides, but an
analogous approach is that of log-linear capture–recapture
modeling (King and Brooks 2001), in which animals are identi-
fied from separate lists. Some photo-identification studies might
use information from both sides in the process of identifying
animals (Joyce and Dorsey 1990). A more robust approach is
to perform the identification on each side separately. We have
shown how these separate data can then be combined.

A major advantage to our modeling approach is its extensibil-
ity. Within the Bayesian framework, models can be compared
by such methods as reversible-jump Markov chain Monte Carlo
techniques (Green 1995). Model extensions include extending
the population model considering an individual-level approach.
This would allow incorporation of the heterogeneity into this
part of the model and also modeling of the unobserved popu-
lation. More detailed modeling of heterogeneity could be ex-
plored by including hyperpriors for the variances of the recap-
ture model terms. For convenience, we analyze the data on an
annual basis. Additional information would be available if the
analyses were conducted on a finer time scale, such as months
or by individual trip. This would allow the model to be extended
to include seasonal effects. For example, dolphins are observed
more frequently in summer months than in winter months, and
this tendency could be included in an extended model by chang-
ing the capture probability to be logit(π) = δt + εj + ζd , where
δt , t ∈ [1, . . . ,12], is a monthly capture coefficient. This may
be of use in modeling fine-scale movements. The response vari-
able itself also can be generalized. Although we are careful to
only include data from high-quality photographs and nicked an-
imals, there is still the possibility of some identification errors,
particularly for more subtly marked individuals. A possible ex-
tension of the model could allow identification to be assigned
different levels of certainty, for example by incorporating an
intermediate state between nonrecapture and recapture that we

term “possible recapture.” This could be done by replacing the
logit function, logit(ν) = log(ν/(1 − ν)), where ν corresponds
to the probability of recapture, by a proportional odds function
(McCullagh 1980). This technique has previously found appli-
cation in a study of photoidentification used to model photo-
graphic quality scores and individual distinctiveness of hump-
back whale tail flukes (Friday, Smith, Stevick, and Allen 2000).
In this approach, the probability of “possible recapture” is given
by ν1 = π1, the probability of certain recapture is given by
ν2 = π1 + π2 and includes the possible recapture category, and
the probability of no capture is given by ν0 = 1 − π1 + π2.
There are two proportional odds functions corresponding to
possible recapture and certain recapture, which are logit(ν1) =
log(π1/(π2 +π3)) and logit(ν2) = log((π1 +π2)/π3). We then
could extend the recapture model using logit(ν1) = α+βj +γk1

and logit(ν2) = α + βj + γk2. This proportional odds approach
may be particularly useful in situations where automatic match-
ing algorithms (Sánchez-Marín 2000) provide an estimate of
the likelihood of a match, which could then be incorporated
into abundance estimate models.

APPENDIX: DERIVATION OF POSTERIORS

Here we show how we derive the posterior conditional distributions
for the model parameters and describe how each is updated within the
MCMC algorithm. The full joint distribution has the form shown in
(A.1). In (A.1), the first two lines correspond to the population model,
the third line corresponds to the inflation model, the fourth line cor-
responds to the observation model, the fifth line corresponds to the
recapture model, and the remaining lines correspond to priors:

π = P(B1|ω1,N0,W0)P (S1|α,N0)

(Sec. 3.1)

×
S∏

j=2

P(Bj |Sj−1,Bj−1,Wj−1,ωj )

× P(Sj |Sj−1,Bj−1, α,βj−1)

(Sec. 3.1)

×
S∏

j=1

P(Wj |Sj ,Bj ,υj )

Tj∏

i=1

P(tnji |υj , twji )

(Sec. 3.2)

×
S∏

j=1

P(nLj
|δL, εjL,Sj ,Bj )P (nRj

|δR, εjR,Sj ,Bj )

(Sec. 3.3)

×
S∏

j=1

P(Hdj |α,βj , γd , δL, εjL, ζdL, δR, εjR, ζdR)

(Sec. 3.4)

× P(N0|λN)P (W0|N0, υ0)P (α, δL, δR,λN ,υ0)

(Sec. 4.1)

×
S∏

j=1

P(βj , εjL, εjR,ωj ,υj )

n∏

d=1

P(γd)P (ζdL)P (ζdR).

(Sec. 4.1) (A.1)
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For each parameter, we obtain the corresponding posterior condi-
tional distribution by extracting all terms containing that parameter
from the full joint distribution. When the conditional distributions have
a standard form, we use the Gibbs sampler (Brooks 1998) to update the
parameters; otherwise, we use Metropolis–Hastings updates (Chib and
Greenberg 1995).

Within a Metropolis–Hastings update, we propose a new value
for a parameter, x, and denote the proposed value by x′. To decide
whether to accept the proposed value, we calculate an acceptance ra-
tio, α = min(1,A), where A is the acceptance ratio. The acceptance
ratio is given by A = π(x′)q(x)/π(x)q(x′), where π(x) is the poste-
rior probability of x and q(x) is the probability of the proposed value.
We accept the new value, x′, with probability α; otherwise, we leave
the value of x unchanged. (See Chib and Greenberg 1995 for an exam-
ple.)

Normal proposal distributions are used for continuous parameters
centered around the current parameter value. Discrete uniform pro-
posals are used for discrete variables, each centered around the current
parameter values. The discrete proposals also require constraints to en-
sure that the proposed values are valid. For example, a proposed value
for N0 must be less than the current value of W0. We provide a detailed
description of each update next.

Population Model

The population model has parameters ωj , λ, Bj , Sj , and N0 and
are updated using Gibbs or Metropolis–Hastings samplers. The condi-
tional posterior distributions for ωj and λN can be derived as

ωj |Bj ,Sj−1,Bj−1

∼ Beta(Bj + .0238,Wj−1 − Sj−1 − Bj−1 − Bj + 1)

and

λN |N0 ∼ Gam(.76 + N0,1.01).

These are individually updated using the Gibbs sampler during each
iteration of the Markov chain.

The parameters Bj , Sj , and N0 are updated by the Metropolis–
Hastings algorithm using acceptance ratios calculated as described ear-
lier. We use uniform proposals centered on the current parameter value
and limited to the range of possible values.

For the Sj ’s we use three alternative proposals:

S′
j=1 ∼ Unif

(
max

(
0, S1 − 5, S2 − B1,max(n1L,n1R) − N1,

2 − B1
)
,

min(S1 + 5,N0,W1 − B1,W1 − B1 − B2,

W1 − B1 − 1)
);

S′
2≤j<J ∼ Unif

(
max

(
0, Sj − 5, Sj+1 − Bj ,max(njL,njR) − Bj ,

2 − Bj

)
,

min(Sj + 5, Sj−1 + Bj−1,Wj − Bj ,Wj − Bj − Bj+1,

Wj − Bj − 1)
);

and

S′
j=J ∼ Unif

(
max

(
0, SJ − 5,max(nJL,nJR) − BJ ,2 − NJ

)
,

min(SJ − 5, Sj−1 + Bj−1,Wj − Bj ,Wj − Bj − 1)
)
.

For Bj , we use three alternative proposals:

B ′
1 ∼ Unif

(
max

(
0,B1 − 15, S2 − S1,max(n1L,n1R) − S1,

2 − S1
)
,

min(B1 + 15,W0 − N0,W1 − S1,W1 − S1 − B2,

W1 − S1 − 1)
);

B ′
2≤j<J ∼ Unif

(
max

(
0,Bj − 15, Sj+1 − Sj ,max(njL,njR) − Sj ,

2 − Sj

)
,

min(Bj + 15,Wj−1 − Sj−1 − Bj−1,Wj − Sj ,

Wj − Sj − Bj+1,Wj − Sj − 1)
);

and

B ′
J ∼ Unif

(
max

(
0,BJ − 15,max(nJL,nJR) − SJ ,2 − SJ

)
,

min(BJ + 15,WJ−1 − SJ−1 − BJ−1,

WJ − SJ ,WJ − SJ − 1)
)
.

For N0, we use

N ′
0 ∼ Unif

(
max(5,N0 − 15, S1),min(N0 + 15,W0 − B1,W0 − 1)

)
.

Inflation Model

The inflation model parameters, Wj and υj , are updated using
Metropolis–Hastings and Gibbs updates. The conditional posterior dis-
tributions for υj can be derived as

υ0|N0,W0 ∼ Beta(N0 + 1,W0 − N0 + 1)

and

υj>0|Sj ,Bj ,Wj , tnji , t
w
ji ∼ Beta

(

Sj + Bj +
T (j)∑

i=1

tnj,i + 1,

Wj − Sj − Bj +
T (j)∑

i=1

twji − tnji + 1

)

.

These are updated separately using the Gibbs sampler on each itera-
tion.

The remaining parameter, Wj , has a nonstandard conditional pos-
terior distribution. We use larger updates than in the population model
because the initial total population is expected to be larger in size:

W ′
0 ∼ Unif

(
max(0,W0 − 15,N0 + 1,N0 + B1),W0 + 15

)
,

W ′
1≤j<J ∼ Unif

(
max(0,Wj − 15, Sj + Bj + 1, Sj + Bj + Bj+1),

Wj + 15
)
,

and

W ′
J ∼ Unif

(
max(0,WJ − 15, SJ + BJ + 1),WJ + 15

)
.

Recapture Model

For the recapture model, we have parameters α, βj , γd , δL, εjL,
ζdL, δR , εjR , and ζdR . These all have nonstandard conditional pos-
terior distributions, and we use the Metropolis–Hastings algorithm to
update the parameters on each iteration. We use individual normal dis-
tribution proposals centered on the current parameter values and with
variance equal to the prior variance, for example,

α′ ∼ N(α,1.85).

[Received June 2005. Revised May 2007.]
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