Acoustic-Trawl-Method Surveys

Estimating CPS biomasses, spatial and length distributions, natural mortalities, and their uncertainties

David A. Demer
Overview – ATM Sampling, Analyses, and Results

- ATM Sampling
 - Equipment
 - Sampling Design
 - Acoustic Sampling
 - Trawl Sampling
- ATM Analyses
 - Echo classification
 - Apportioning to Species
 - Converting to Fish Densities
 - Converting to Biomasses
 - Estimating Sampling Errors
- ATM Results
 - CPS Distributions and abundances
 - Length Distributions and Natural Mortalities
 - Data management

- ATM Strengths
 - Direct estimates of CPS populations
 - Estimates for multiple species
- ATM Challenges
 - Sample Entire Stocks
 - Sample Near Shore
 - Sample Near Sea-Surface
 - Better Estimate Species Proportions & Sizes
- ATM Strategies for Improvement
 - Characterize Habitats for Multiple Stocks
 - Use Scanning, Multi-beam and Imaging Sonars
 - Characterize Trawl Performance
 - Sample Optically Underway
Equipment

- Simrad EK60 Echosounders
- Nordic 264 Trawl
Sampling Design

- Six Regional Fisheries
 - Ensenada, Mexico
 - San Pedro, California, USA
 - Monterey, California, USA
 - Oregon, USA
 - Washington, USA
 - Vancouver Island, Canada

- Seasonal Sardine Distribution
 - Spring – off central and so. CA
 - Summer – off central CA, OR, WA, and Vancouver Island

Sampling Design

- Potential habitat (optimal+good)
- Eggs (positive samples red)
- Positives contiguous
 - $11.5 \leq \text{SST} \leq 15.5 \, ^\circ\text{C}$ &
 - $0.18 \leq \text{CHL} \leq 3.2 \, \text{mg/m}^3$
- Inshore boundary
 - Fresh upwelling
 - $\text{SST} < 11.5$ & $\text{CHL} > 3.2$
- Offshore boundary
 - Oceanic water
 - $\text{SST} > 15.5$ & $\text{CHL} < 0.18$

Sampling Design

ATM Sampling

- Transects
 - 40 – 80 n.mi. spacing
 - Nominally 10 kt speed
 - Nighttime stations
- Acoustics
 - Simrad EK60s
 - 18, 38, 70, 120, 200 kHz
 - 1 ms pulses
 - Optimized range (to 750 m)
 - Optimized transmit interval
- Trawls
 - Nordic 264
 - Surface
 - Nighttime, nominally 3 day⁻¹

ATM Analysis – Apportioning to Species

CPS backscatter

CPS proportion

Sardine density
ATM Results – Estimated Distributions

ATM Results – Estimated Biomass and Error

- Biomass estimated by multiplying the stratum mean density and area
- Random sampling error estimated by bootstrap of transect mean densities

ATM Results – Length Distributions

- Biomass-weighted lengths
- Observed cohorts
 - 2009-2010 during 2011–2012

Data Management

- Data Processing and Telemetry
 - Data processed shipboard and ashore
 - Data and products telemetered via satellite
 - Reports drafted by the end of each survey
- Data Archive
 - Local data server
 - Managed by researchers
 - Backed-up by IT
- Publications
 - Peer-reviewed journals
 - NOAA Technical Memoranda
ATM Strengths

“One of the most urgent needs ... is in our capability to make timely, synoptic, species specific stock assessments over wide geographic areas...underwater acoustics [is] the only recourse in conducting more than a surface examination of marine fish resources.”

- D.V. Holliday, 1972

“... acoustic-midwater trawl surveys are the most effective means for directly assessing the status of northern anchovies [including] ...distribution and abundance... availability, seasonal movements, schooling behavior, and vulnerability to harvest methods...”

- K. F. Mais, 1974

• Direct estimates for multiple species of fish and zooplankton

ATM – Challenges

- Sample Entire Stocks
- Sample Near Shore
 - Currently > 40 m seabed depth and 2 km from shore
- Sample Near Sea-Surface
 - Currently > 10 m water depth
- Better Estimate Species Proportions and Fish Sizes
 - Currently 1-3 nighttime trawls in areas with daytime CPS echoes

ATM Strategies for Improvement – Habitat Characterization

- Seasonal dynamics of the potential habitat for the northern stock of sardine
- Temperature regimes for the northern and southern stocks of sardine
- Apportion landings to different stocks
- Cooperatively sample transboundary stocks

ATM Strategies for Improvement – Optical Sampling

- Monitor Trawl Performance
 - Trawl-mounted cameras
 - Monitor trawl shape and function
 - Observe fish behaviors
 - Quantify size selectivity
- Sample optically underway
ATM Strategies for Improvement – Acoustic Imaging

• Use Scanning, Multi-beam and Imaging Sonars

Simultaneous 3-D imaging of fish and seabed
ATM Strategies for Improvement – Automation and Enhanced Nearshore Sampling

Automate data collection, archive, processing, reporting, and dissemination

Increase ATM sampling nearshore, particularly in fishing regions