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Model uncertainty and limited data are fundamental challenges to robust

management of human intervention in a natural system. These challenges

are acutely highlighted by concerns that many ecological systems may con-

tain tipping points, such as Allee population sizes. Before a collapse, we do

not know where the tipping points lie, if they exist at all. Hence, we know

neither a complete model of the system dynamics nor do we have access

to data in some large region of state space where such a tipping point

might exist. We illustrate how a Bayesian non-parametric approach using

a Gaussian process (GP) prior provides a flexible representation of this

inherent uncertainty. We embed GPs in a stochastic dynamic programming

framework in order to make robust management predictions with both

model uncertainty and limited data. We use simulations to evaluate this

approach as compared with the standard approach of using model selection

to choose from a set of candidate models. We find that model selection erro-

neously favours models without tipping points, leading to harvest policies

that guarantee extinction. The Gaussian process dynamic programming

(GPDP) performs nearly as well as the true model and significantly outper-

forms standard approaches. We illustrate this using examples of simulated

single-species dynamics, where the standard model selection approach

should be most effective and find that it still fails to account for uncertainty

appropriately and leads to population crashes, while management based on

the GPDP does not, as it does not underestimate the uncertainty outside of

the observed data.
1. Introduction
Decision-making under uncertainty is a ubiquitous challenge in the management

of human intervention in natural resources and conservation. Decision-theoretic

approaches provide a framework to determine the best sequence of actions in

face of uncertainty, but only when that uncertainty can be meaningfully quanti-

fied [1]. Over the last four decades (beginning with Clark [2], Clark [3] and

Walters & Hilborn [4]), dynamic optimization methods, particularly stochastic

dynamic programming (SDP), have become increasingly important as a means

of understanding how to manage human intervention into natural systems.

Simultaneously, there has been increasing recognition of the importance of

multiple steady states or ‘tipping points’ [5–7] in ecological systems.

We develop a novel approach to address these concerns in the context of

fisheries; although the challenges and methods are germane to other problems

of conservation or natural resource exploitation. Economic value and ecological

concern have made marine fisheries the crucible for much of the founding work

on management under uncertainty [2,3,8–11].

Even if we know the proper deterministic description of the biological

system, there is intrinsic stochasticity in biological dynamics, measurements
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and implementation of policy (e.g. [10,12–14]). We may also

lack knowledge about the parameters of the biological

dynamics (parametric uncertainty, e.g. [11,15–17]), or even

not know which model is a proper description of the system

(structural uncertainty, e.g. [18–20]). Of these, the latter is

generally the hardest to quantify. Typical approaches confront

the data with a collection of models, assuming that the true

dynamics (or reasonable approximation) is among the collec-

tion and then use model-choice or model averaging to arrive

at a conclusion [18–20]. Even setting aside other concerns

[19], these approaches are unable to describe uncertainty

outside the observed data range.

Structural uncertainty is particularly insidious when we try

to predict outside of the range of observed data [21] because we

are extrapolating into unknown regions. In management appli-

cations, this extrapolation uncertainty is particularly important

because: (i) management involves considering actions that

may move the system outside the range of observed behaviour,

and (ii) the decision tools (optimal control theory, SDP) rely on

both reasonable estimates of the expected outcomes and on

the weights given to those outcomes (e.g. [22]). Thus, charac-

terizing uncertainty is as important as characterizing the

expected outcome.

Tipping points in ecological dynamics [5,7] highlight this

problem because precise models are not available and data

are limited such as around high stock levels or an otherwise

desirable state. With perfect information, one would know

just how far a system could be pushed before crossing the tip-

ping point, and management would be simple. But we face

imperfect models and limited data and, with tipping points,

even small errors can have very large consequences, as we

shall illustrate later. Because intervention may be too late

once a tipping point has been crossed (but see Hughes et al.
[23]), management is often concerned with avoiding tipping

points before any data about them are available.

The dual concerns of model uncertainty and incomplete data

create a substantial challenge to existing decision-theoretic

approaches [24]. We illustrate how SDP [25,26] can be imple-

mented using a Bayesian non-parametric (BNP) model of

population dynamics [27]. The BNP method has two distinct

advantages. First, using a BNP model sidesteps the need for an

accurate model-based description of the system dynamics.

Second, a BNP model better reflects uncertainty when extrapolat-

ing beyond the observed data. This is crucial to providing robust

decision-making when the correct model is not known (as is

almost always true). (We use robust to characterize approaches

that provide nearly optimal solutions without being sensitive to

the choice of the (unknown) underlying model.)

This paper is, to our knowledge, the first ecological appli-

cation of the SDP without an a priori model of the underlying

dynamics. Unlike parametric approaches that can only reflect

uncertainty in parameter estimates, the BNP method provides

a broader representation of uncertainty, including uncertainty

beyond the observed data. We will show that Gaussian process

dynamic programming (GPDP) allows us to find robust man-

agement solutions in face of limited data without knowing

the correct model structure.

For comparisons, we consider the performance of manage-

ment based on GPDP against management policies derived

under several alternative parametric models [10,11,25].

Rather than compare models in terms of best fit to data, we

compare model performance in the concrete terms of the

decision-maker’s objectives.
2. Approach and methods
We first describe the requirements of dynamic optimization for

the management of human intervention in natural resource

systems. After that we describe three parametric models for

population dynamics and the Gaussian process (GP)1 descrip-

tion of population dynamics. All computer code used here

has been embedded in the manuscript sources (see Xie [28]),

and an implementation of the GPDP approach is provided as

an accompanying R package. Source code, R package and

the data files corresponding to each figure are archived in

the electronic supplementary material [29].

(a) Requirements of dynamic optimization
Dynamic optimization enquires characterizing the dynamics of

a state variable (or variables), a control action and a value func-

tion. For simplicity, we consider only a single-state variable.

This is a best-case scenario for the parametric models because

we simulate underlying dynamics from one of the three para-

metric models, whereas in the natural world we never know

the ‘true’ model. In addition, by choosing one-dimensional

models with just a few parameters, we limit the chance that

poor performance will be owing to inability to estimate par-

ameters accurately, something that becomes a more severe

problem for higher dimensional parametric models. Finally,

the parametric models we consider are commonly used in

modelling stock-recruitment dynamics or to model sudden

transitions between alternative stable states.

We let X(t) denote the size (numbers or biomass) of the

focal population at time t and assume that in the absence of

take its dynamics are

X(tþ 1) ¼ Z(t)f(X(t),p), (2:1)

where Z(t) is lognormally distributed process stochasticity

[10] and p is a vector of parameters to be estimated from

the data. We describe the three choices for f (X(t),p) in the

next section.

The control action is a harvest or take, h(t), measured in

the same units as X, at time t. Thus, in the presence of take,

the population size on the right hand side of equation (2.1)

is replaced by S(t) ¼ X(t) 2 h(t).
To construct the value function, we consider a return

when X(t) ¼ x(t) and harvest h(t) ¼ h denoted as the

reward, R(x(t),h). For example, if the return is the harvest at

time t, then R(x(t),h(t)) ¼min(x(t),h(t)). We assume that

future harvests are discounted relative to current ones at a

constant rate of discount d and ask for the harvest policy

that maximizes total discounted harvest between the current

time t and a final time T. That is, we seek to maximize over

choices of harvest E[
PT

t¼0 R(X(t), h(t), t)dt], where the state

dynamics are given by equation (2.1) and E denotes the

expectation over future population states.

In order to find that policy, we introduce the value func-

tion V(x(t),t) representing the total discounted catch from

time t onwards given that X(t) ¼ x(t). This value function

satisfies an equation of SDP [3,25,30,31]:

V(x(t), t) ¼ max
h(t)

{R(h(t), x(t))þ d � EX(tþ1)[V(X(tþ 1), tþ 1)

� jx(t), h(t)]}, (2:2)

where expectation is taken over all possible values of the next

state, X(t þ 1), and maximized over all possible choices of

harvest, h(t). That is, at time t, when population size is x(t)
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and harvest h(t) is applied, the immediate return is

R(h(t),x(t)). When the sole source of uncertainty is the process

stochasticity term Z, the expectation in equation (2.2) is

equivalent to taking expectations over Z(t). That is

EX(tþ1)[V(X(tþ 1), tþ 1)jx(t), h(t)]

¼ EZ(t)[V(Z(t)f(x(t)� h(t))jp), tþ 1jx(t), h(t)], (2:3)

where the population size after the take is x(t) 2 h(t), which is

then translated into X(t þ 1) by equation (2.1) (i.e. we replace

X(t þ 1) by Z(t)f (x(t) 2 h(t)jp)).

When the parameters governing the dynamics are also

uncertain, we take the expectation over the posterior distribution

for the parameters

EX(tþ1)[V(X(tþ 1), tþ 1)jx(t), h(t)]

¼ Epjdata{EZ(t)jp,data[V(Z(t)f(x(t)� h(t)jp), t)]}, (2:4)

when the underlying population dynamics are unknown (the

case of structural uncertainty), the function f itself is uncertain

and the expectation for the next state includes uncertainty in

f as well. That is

EX(tþ1)[V(X(tþ 1), tþ 1)jx(t), h(t)]

¼ Epjdata{E f ,Z(t)jp,data[V(Z(t)f(x(t)� h(t)jp), t)]}: (2:5)

We consider the finite time problem with T ¼ 1000, which we

solve using the standard value iteration algorithm [25,30].
(b) Parametric models
We consider three candidate parametric models for the popu-

lation dynamics: the Ricker model, the Allen model [32] and

the Myers model [33], equations (2.6)–(2.8). In all three, we

let K denote the carrying capacity and r the maximum per
capita growth rate. The Ricker model has two parameters

and the right hand side of equation (2.1) is

f(S(t)jr, K) ¼ S(t)er(1�S(t)=K): (2:6)

The Allen model has three parameters:

f(S(t)jr, K, Xc) ¼ S(t)er(1�S(t)=K)(S(t)�Xc), (2:7)

where Xc denotes the location of the unstable steady state

(i.e. the tipping point).

The Myers model also has three parameters:

f(S(t)jr, K, u) ¼ rS(t)u

1þ S(t)u=K
, (2:8)

where u ¼ 1 corresponds to Beverton–Holt dynamics and

u . 2 leads to Allee effects and multiple stable states.

The Ricker model does not lead to multiple steady states.

The Allen model resembles the Ricker dynamics with an

added Allee effect parameter [34], below which the popu-

lation cannot persist. The Myers model also has three

parameters and contains an Allee threshold, but unlike the

Ricker model saturates at high population size. The multipli-

cative lognormal stochasticity in equation (2.1) introduces

one additional parameter s that must be estimated.

Because of our interest in management performance in the

presence of tipping points, all of our simulations are based on

the Allen model. The Allen model is thus the state of nature and

is expected to provide the best-case scenario. The Ricker model

is a reasonable approximation of these dynamics far from

the Allee threshold (but lacks threshold dynamics), while the

Myers model shares the essential feature of a threshold but
differs in structure from the Allen model. Throughout, we

refer to the ‘true’ model when the underlying parameters are
known without error, and refer to the ‘Allen’ model when

these parameters have been estimated from the sample data.

We consider a period of 40 in which data are obtained to

estimate the parameters or the GP. This is long enough that

the estimates do not depend on the particular realization,

and longer times are not likely to provide substantial improve-

ment. Each of the models is fitted to the same data (figure 1).

We inferred posterior distributions for the parameters

of each model by Gibbs sampling (Gelman et al. [35]

implemented in R [36] using jags, [37]). We choose uniform

priors for all parameters of the parametric models (see the elec-

tronic supplementary material, tables S1–S3; R code provided).

We show one-step-ahead predictions of these model fits in

figure 1. We tested each chain for Gelman–Rubin convergence

and results were robust to longer runs. For each simulation we

also applied several commonly used model selection criteria

(Akaike information criterion, Bayesian information criterion,

deviance information criterion; see Burnham & Anderson

[38]) to identify the best fitting model.

Additionally, we compute the maximum-likelihood esti-

mate (MLE, as we will refer to this model in the figures) of

the parameters for the (structurally correct) Allen model.

Comparing this to using the posterior distribution of par-

ameters inferred from Markov chain Monte Carlo (MCMC)

for the same model gives some indication of the importance

of this uncertainty in the dynamic programming.
(c) The Gaussian process model
The core difference for our purpose between the estimated GP

and the estimated parametric models is that the estimated GP

model is defined explicitly in reference to the observed data.

As a result, uncertainty arises in the GP model not only from

uncertainty in the parameters, but is also increased in regions

farther from the observed states, such as low population sizes

in the example illustrated here. The estimated parametric

models, by contrast, are completely specified by the parameters.

The use of GPs to characterize dynamical systems is

relatively new [39] and was first introduced in the context eco-

logical modelling and fisheries management in Munch et al.
[40]. GP models have subsequently been used to test for the pres-

ence of Allee effects [41], estimate the maximum reproductive

rate [42], determine temporal variation in food availability [43]

and provide a basis for identifying model-misspecification [44].

An accessible and thorough introduction to the formulation

and use of GPs can be found in Rasmussen & Williams [45].

A GP is a stochastic process for which any realization con-

sisting of n points follows a multivariate normal distribution

of dimension n. To characterize the GP, we need a mean

function and a covariance function. We proceed as follows.

As before, we assume that the data X(t) are observed with

process stochasticity around a mean function g(X(t)):

X(tþ 1) ¼ g(X(t))þ 1, (2:9)

where 1 are independent and identically distributed normal

random variables with zero-mean and variance s2. Note that

we have chosen to assume additive stochasticity. While we

could consider lognormal stochasticity as in the parametric

models, we make this choice to emphasize that the GP

approach need not have structurally correct stochasticity to

be effective.
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Figure 1. Points show the training data of stock size over time. Curves show the expectations over the posterior step-ahead predictions based on each of the
estimated models. Observe that all models are fitting the data reasonably well. (Online version in colour.)
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In order to make predictions, we update the GP based on

the observed set of transitions. To do so, we collect the time

series of observed states into a vector of ‘current’ states,

Xobs¼ fX(1), . . . ,X(T21)g and a vector of ‘next’ states, Yobs ¼

fX(2), . . . ,X(T21)g, where T is the time of the final obser-

vation. Conditional on these observations, the predicted next

state, g(Xp), for any given ‘current’ state, Xp follows a normal

distribution with mean E and variance C determined using

the standard rules for conditioning in multivariate normals, i.e.

E ¼ K(Xp, Xobs) (K(Xobs, Xobs)� sIn)�1 Yobs (2:10)

and

C ¼ K(Xp, Xp)� K(Xp, Xobs) (K(Xobs, Xobs)� sI)�1 K(Xobs, Xp) :

(2:11)

Here ln is the n by n identity matrix (i.e. a matrix with ones

down the diagonal and zeros (elsewhere) and K is the ‘covari-

ance kernel’. The covariance kernel controls how much

influence one observation has on another. In the present appli-

cation we use the squared-exponential kernel which, when

evaluated over a pair of vectors, say x and y, generates a

covariance matrix whose i,jth element is given by

Ki,j(x, y) ¼ exp
�(xi � yj)

2

2‘2

 !
, (2:12)

so that ‘ gives the characteristic length-scale over which corre-

lation between two observations decays. See Rasmussen &

Williams [45] for other choices of covariance kernels and

their properties. Note that this simple formulation assumes a

prior mean of zero. For the parameters we use inverse

Gamma priors on both the length-scale ‘ and s, thus for

example

f(‘; a, b) ¼ ba

G(a)
‘�a�1 exp �b

‘

� �
, (2:13)
for the prior on ‘, a ¼ 10 and b ¼ 10. The prior on s, a ¼ 5 and

b ¼ 5.

We use a Metropolis–Hastings MCMC (Gelman et al.
[35]) to infer posterior distributions of the parameters of the

GP (electronic supplementary material, figure S4, code in

appendix). Since the posterior distributions differ substan-

tially from the priors (electronic supplementary material,

figure S4), most of the information in the posterior comes

from the data rather than the prior belief.
(d) The method of Gaussian process dynamic
programming

We derive the harvest policy from the estimated GP by inserting

it into a SDP algorithm. Given the GP posteriors, we construct

the transition matrix representing the probability of going to

each state X(t þ 1) given any current state X(t) and any harvest

h(t) (see the function gp_transition_matrix() in the pro-

vided R package). Given this transition matrix, we use the same

value iteration algorithm as in the parametric case to determine

the optimal policy. In doing so, the uncertainty in the future

state under the GP, X(t þ 1), includes both process uncertainty

(based on the estimation of s) and structural uncertainty of the

posterior collection of curves.
3. Results
(a) Parametric and Gaussian process models for

population dynamics
To ensure our results are robust to the choice of parameters,

we will consider 96 different scenarios. To help better under-

stand the process, we first describe in detail the results of a

single scenario.
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Table 1. Model selection scores for several common criteria (DIC, deviance
information criterion; AIC, Akaike information criterion; BIC, Bayesian
information criterion) all select the wrong model. As the true (Allen) model
is not distinguishable from the simpler (Ricker) model in the region of the
observed data, this error cannot be avoided regardless of the model-choice
criterion. This highlights the danger of model choice when the selected
model will be used outside of the observed range of the data.

Allen Ricker Myers

DIC 50.75 50.45 50.41

AIC 224.51 230.13 227.01

BIC 217.75 225.06 220.25
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All of the models fit the observed data rather closely and with

relatively small uncertainty. In figure 1, we show the posterior

predictive curves. The training data of stock sizes observed

over time are points, overlaid with the step-ahead predictions

of each estimated model using the parameters sampled from

their posterior distributions. Compared with the true model

most estimates appear to over-fit, predicting patterns that are

actually due purely to stochasticity. Model selection criteria

(table 1) penalize more complex models and show a preference

for the simpler Ricker model over the models with alternative

stable states (Allen and Myers). The electronic supplementary

material provides details on the model estimates.

We show the mean inferred population dynamics of each

model relative to the true model used to generate the data in

figure 2, predicting the relationship between observed popu-

lation size (x-axis) to the population size after recruitment the

following year.
In addition to the raw data, the GP is conditioned on going

through the point 0,0 without error. All parametric models

also make this assumption. Conditioning on (0,0) is equivalent

to making the assumption that the population is closed, so

that once it hits 0 it stays at 0, despite the lack of any data in

the observed sequence to justify this. This assumption illustrates

how the GP can capture common-sense biology without having

to assume more explicit details about the dynamics at low popu-

lation numbers that have never been observed. If the population

were not closed, one could repeat the entire analysis without this

assumption. Unlike parametric models, the GP corresponds to a

distribution of curves, of which this plot only shows the means.

Uncertainty in the parameters of the GP (not shown) further

widens the band of possible population sizes. In electronic sup-

plementary material, figure S1, we show the performance of the

models outside the observed training data.

Despite the similarities in model fits to the observed data,

the policies inferred under each model differ widely (figure 3).

Policies are shown in terms of target escapement, S(t) ¼ xt 2 h.

Under models such as this a constant escapement policy is

expected to be optimal [10], whereby population levels below

a certain size S are unharvested, while above that size the harvest

strategy aims to return the population to S. Whenever a model

predicts that the population will not persist below a certain

threshold, the optimal solution is to harvest the entire population

immediately, resulting in an escapement S ¼ 0, as seen in the

true (correct form, exact parameters) model, the Allen model

(correct form, estimated parameters) and the GP. Only the struc-

turally correct model (Allen model) and the GP produce policies

close to the true optimum policy.

In figure 4, we show the consequences of managing 100 repli-

cate realizations of the simulated fishery under policies derived

from each model. The structurally correct model under-harvests,



7.5

5.0

2.5

0

7.5

5.0

2.5

0

GP

Ricker Allen Myers

true MLE

stock size, x(t) stock size, x(t)stock size, x(t)
0 5 10 15 0 5 10 15 0 5 10 15

es
ca

pe
m

en
t, 

S(
t)

es
ca

pe
m

en
t, 

S(
t)

Figure 3. The steady-state optimal policy (infinite boundary) calculated under each model. Policies are shown in terms of target escapement, S(t), as under models
such as this a constant escapement policy is expected to be optimal [10]. Several policies show a numerical jitter due to the discretization of states in the dynamic
programming algorithm; doubling the number of grid points did not qualitatively change the results. (Online version in colour.)

GP true MLE

Ricker Allen Myers

0

2.5

5.0

7.5

10.0

0

2.5

5.0

7.5

10.0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
stock size, x(t) stock size, x(t) stock size, x(t)

fi
sh

st
oc

k
fi

sh
st

oc
k

Figure 4. In the management context, GPDP outperforms approaches based on parametric models. We show 100 replicate simulations of the stock dynamics
(equation (2.1)) under the policies derived from each of the estimated models, as well as the policy based on the exact underlying model. (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20141631

6



GP MLE

Ricker Allen

Myers

0

20

40

60

0

20

40

60

0

20

40

60

0.25 0.50 0.75 1.00 1.25
net present value

co
un

t
co

un
t

co
un

t

Figure 5. Histograms of the realized net present value of the fishery over a range of simulated data and resulting parameter estimates. For each dataset, the three
models are estimated as described above. (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20141631

7

leaving the stock to vary around its unfished optimum. The

structurally incorrect Ricker model over-harvests the population

past the tipping point consistently, resulting in the immediate

crash of the stock and thus leads to minimal long-term catch.

The results across replicate stochastic simulations are

most easily compared by using the relative differences in

net present value realized by each of the models (figure 5).

Although not perfect, the GPDP consistently realizes a

value close to the optimal solution and avoids ever driving

the system across the tipping point, which results in the

near-zero value cases in the parametric models.

(b) Sensitivity analysis
These results are not sensitive to the modelling details of the

simulation. The GPDP estimate remains very close to the

optimal solution (obtained by knowing the true model)

across changes to the training simulation, scale of stochasti-

city, parameters or structure of the underlying model. In

the electronic supplementary material, we consider both a

Latin hypercube approach and a more focused investigation

of the effects of the relative distance to the Allee threshold

and the variance of process stochasticity.

The GPDP is only weakly influenced by increasing sto-

chasticity or increasing Allee effects over much of the range

(electronic supplementary material, figure S2). Larger s or

higher Allee levels make even the optimal solution without

any model or parameter uncertainty unable to harvest the

population effectively (e.g. the stochasticity is large enough

to violate the self-sustaining criterion of Reed [10]).
4. Discussion
Simple, mechanistically motivated models offer the potential to

increase our basic understanding of ecological processes [46,47],

but such models can be both inaccurate and misleading when

used in a decision-making framework. In this paper, we tackled

two aspects of uncertainty that are common to many ecological

decision-making problems and fundamentally challenging to

existing approaches that largely rely on parametric models:

— we do not know the correct models for ecological systems;

and

— we have limited data from which to estimate the model.

We have illustrated how the use of non-parametric

methods provides more reliable solutions in the sequential

decision-making problem.
(a) Traditional model-choice approaches can be
positively misleading

Our results illustrate that model-choice approaches can be

absolutely misleading—by providing support to models

that cannot capture tipping point dynamics because they

have fewer parameters and the data are far from the tipping

point. That is, when the data come from around the stable

steady state, all the parametric models are approximately

linear and approximately identical. Thus, it is intuitive that

all model selection methods choose the simplest model.

In a complex world, the result is suboptimal. But in a
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world that might contain tipping points, the result could

be disastrous.

Many managers both in fisheries and beyond face a similar

situation: they have not observed the population dynamics at

all possible densities. A lack of comprehensive data at all popu-

lation sizes, combined with the inability to formulate accurate

population models for low population sizes in the absence of

data, make this situation the rule more than the exception.

Relying on parametric models and model-choice processes

that favour simplicity ignores this basic reality. For a long

time, Carl Walters (e.g. [4]) has argued that if we began by fish-

ing any newly exploited population down to very low levels

and then let it recover, we would be much better at estimating

population dynamics and thus predicting the optimal harvest

levels. While certainly true, this presents a rather risky policy

in the face of potential tipping points. The GPDP offers a

risk-adverse alternative.

(b) Gaussian process dynamic programming population
dynamics capture larger uncertainty in regions
where the data are poor

Parametric models perform most poorly when we seek a man-

agement strategy outside the range of the observed data. The

GPDP, by contrast, leads to a predictive model that expresses

a great deal of uncertainty about the probable dynamics outside
the range of the observed data, while retaining very good pre-

dictive accuracy inside the range. The management policy

based on the GPDP balances uncertainty outside the range of

the observed data against the immediate value of the harvest,

and acts to stabilize the population dynamics in a region of

state space in which the predictions are reliably reflected by

the data.

Such problems are ubiquitous across ecological decision-

making and conservation where the greatest concerns involve

decisions that lead to population sizes that have never been
observed and for which we do not know the response—

whether this is the collapse of a fishery, the spread of an

invasive, or the loss of habitat.

(c) The role of the prior
Outside of the observed range of the data, the GP reverts to

the prior, and consequently the choice of the prior can also

play a significant role in determining the optimal policy. In

the examples shown here we have selected a prior that is

both relatively uninformative (owing to the broad priors

placed on its parameters ‘ and s) and simple (the choice of

our covariance function, equations (2.12) and (2.13)). In prac-

tice, these should be chosen to confer particular biological

properties. In principle, this may allow a manager to improve

the performance of the GPDP by adding detail as is justified.

For instance, it would be possible to use a linear or a Ricker-

shaped mean in the prior without making the much stronger

assumption that the Ricker is the structurally correct model

[41]. One fruitful avenue of future research is identifying cri-

teria to ensure the prior and the reward function are chosen

appropriately for the problem at hand.
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Endnote
1We abbreviate Gaussian process as GP, which refers to the statistical
model we use to approximate the population dynamics, and we use
the term Gaussian process dynamic programming (GPDP), to refer to
the use of a GP as the underlying process model when solving a dynamic
programming equation. Hencewe will refer to the models as: GP, Ricker,
Allen, etc., and the novel method we put forward here as GPDP.
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