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Identifying causality (1) in complex systems can be difficult. Contradic-
tions arise in many scientific contexts where variables are positively 
coupled at some times and at other times appear unrelated or even nega-
tively coupled depending on system state (movie S1). Baltic Sea fisher-
ies, for example, are known to exhibit radically different dynamic 
control regimes (top down versus bottom up) depending on the threshold 
abundance of planktivores, causing the correlations between fish abun-
dance and zooplankton time series to change sign (2). Such state-
dependent behavior is a defining hallmark of complex nonlinear systems 
(3, 4), and nonlinearity is ubiquitous in nature (3–11). 

Ephemeral or “mirage” correlations are common in even the sim-
plest nonlinear systems (7, 11–13), such as shown in Fig. 1 for two cou-
pled first-order nonlinear difference equations that exhibit chaotic 
behavior (14). 
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When this happens variables that are positively coupled for long periods, 
can spontaneously become anti-correlated or decoupled. Such behavior 
is a common problem in fitting models to observational data (15).  

Although correlation is neither necessary nor sufficient to establish 
causation, it remains deeply ingrained in our heuristic thinking (8, 13, 
16, 17). Thus, one might conclude (incorrectly) that because the coupled 
variables in Fig. 1 show no long-term correlation, there is no causal link. 
With increasing recognition that nonlinear dynamics are ubiquitous, and 
that relationships among variables will depend on system state, the use 
of correlation to infer causation becomes truly difficult. 

An alternative approach, Granger causality (GC) (18), provides a 
framework for investigating causal linkages among time series variables, 
where predictability as opposed to correlation is used to establish causa-
tion. GC is recognized as the primary advance on the causation problem 
since Berkeley (1). Variable X is said to “Granger cause” Y if the pre-
dictability of Y (in some exact idealized model) declines when X is re-
moved from the universe of all possible causative variables, U (18). The 

key requirement of Granger is separa-
bility, namely that information about a 
causative factor is unique to that varia-
ble (e.g., information about predator 
effects is not contained in time series 
for the prey). Separability is satisfied 
in most linear systems, and GC has 
been useful for stochastic systems, for 
nonlinear systems exhibiting stable 
points or limit cycles (linear dynamics 
that do not depend on system state), 
and for detecting interactions between 
strongly-coupled variables in nonlinear 
systems. 

However, as Granger (18) realized 
early on, this approach may be prob-
lematic in general nonlinear dynamic 
systems (especially with weak to mod-
erate coupling). For example, ambigu-
ous results are obtained for the system 
in Fig. 1 (see GC calculations S1). This 
is because separability is not satisfied 
in such systems. That is to say, if X is a 
cause for Y, information about X will 
be redundantly present in Y itself, and 
cannot formally be removed from U—
a consequence of Takens’ Theorem 
(19, 20). To see this, note that Eq. 1 

could be equivalently re-written as a model for X(t + 1) in terms of X(t) 
and X(t – 1) (see box S1 for a worked example). Doing so makes the 
information from Y(t) completely redundant—it can be removed without 
affecting our ability to predict X(t + 1). When Granger’s definition is 
violated, GC calculations are no longer valid, leaving open the question 
of detecting causation in such systems. 

In addition to non-separability, ecosystems differ from the systems 
typically studied with Granger’s approach in other significant ways. 
First, in ecosystem dynamics, weak to moderate coupling is the norm. 
McCann (21) and others have developed a strong case for the ubiquity of 
weak coupling in ecological food webs and have demonstrated the im-
portance of weak to moderate coupling for system stability. Second, 
ecosystems are typically subject to forcing by external driving variables 
such as temperature, precipitation, and upwelling [e.g., (6, 22)]. Because 
many species share similar abiotic environments, this can lead to correla-
tions and apparent synchrony among non-interacting species [e.g., the 
Moran effect (23)], complicating the task of identifying coupling among 
ecosystem components. It is therefore important in ecology to have 
methods that: (i) address non-separable nonlinear systems, (ii) identify 
weakly coupled variables, and (iii) distinguish the dynamics of interac-
tions among individual species from the effects of shared driving varia-
bles. 

Here we examine an approach aimed specifically at identifying cau-
sation in ecological time series: cases not covered by GC. We demon-
strate the principles of our approach with simple model examples, 
showing that the method is effective at distinguishing species interac-
tions from the effects of shared driving variables. Finally, we apply the 
method to ecological data from experimental and field studies that fall 
outside Granger’s framework, showing how it distinguishes top-down 
from bottom-up control in the classic Paramecium-Didinium experi-
ment, and clarifies the ongoing debate about the nature of interactions 
among sardine, anchovy and sea surface temperature in the California 
Current ecosystem. 

Our approach is not competing with the many effective methods that 
use GC (see supplementary text); rather it is specifically aimed at a class 
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of system not covered by GC. GC calculations S1 to S5 verify that GC 
does not apply to this class of system. 

Dynamic causation and CCM. In dynamical systems theory, time 
series variables (say X and Y) are causally linked if they are from the 
same dynamic system (4, 19, 20), thereby sharing a common attractor 
manifold M (movies S1 to S3 illustrate this idea). This means that each 
variable can identify the state of the other (3, 19, 20, 24, 25) (e.g., infor-
mation about past prey populations can be recovered from the predator 
time series, and vice versa). Additionally, when one variable (say X) is a 
stochastic environmental driver of a population variable Y, information 
about the states of X can be recovered from Y, but not vice-versa (e.g., 
fish time series can be used to estimate weather but not vice versa), 
which runs counter to Granger’s intuitive scheme (see explanation in 
box S1). 

Our alternative approach, convergent cross mapping (CCM), tests 
for causation by measuring the extent to which the historical record of Y-
values can reliably estimate the state of X. This can only happen if X is 
causally influencing Y. In more detail, CCM looks for the signature of X 
in Y’s time series by seeing if there is a correspondence between the 
“library” of points in the attractor manifold built from Y, MY, and points 
in the X manifold, MX; these two manifolds are constructed from lagged-
coordinates of the time series variables Y and X respectively (3, 19, 24) 
(movies S1 and S2). 

Essentially, the idea is to see if nearby points on MY correspond 
temporally to nearby points on MX; and more specifically, if the time 
indices of nearby points on MY can be used to identify nearby points on 
MX. If so, then one can use Y to estimate states of X and visa versa. This 
procedure is illustrated in Fig. 2 and movie S3, with full technical details 
including an algorithm in (26). 

Note that CCM is related to the general notion of cross prediction (3, 
25) but with important differences. First, CCM estimates “states” across 
variables and does not forecast how the system “evolves” on the mani-
fold. This eliminates possible information loss from chaotic dynamics 
(Lyapunov divergence), and accommodates non-dynamic (i.e., random) 
variables. More importantly, CCM involves convergence, a key property 
that distinguishes causation from simple correlation. Convergence means 
that cross-mapped estimates improve in estimation skill with time series 
length, L (sample size used to construct a library) (Fig. 3A, fig. S2, and 
box S1). With more data, the trajectories defining the attractor fill in and 
become dense, resulting in closer nearest neighbors and declining esti-
mation error (a higher correlation coefficient) as L increases (Fig. 2). 
Thus, CCM is a necessary condition for causation. Indeed, it can be 
shown that failing to account for convergence explains conflicting re-
sults reported in the literature with related methods (supplementary text) 
(fig. S5). 

In practical applications, where shadow manifolds are low dimen-
sional approximations of the true system, convergence will be limited by 
observational error, process noise and time series length, L. Thus, with 
limited or noisy field data CCM is demonstrated by predictability that 
increases with L (fig. S3). See (26) for a discussion of data requirements. 

Framework for identifying causation, case i: Bidirectional cau-
sality via functional coupling. Bidirectional causality is analogous to 
the concept of “feedback” between two time series described by Granger 
(18) and is the primary case covered by Takens (19). Simply put, if vari-
ables are mutually coupled (e.g., predator and prey), they will cross map 
in both directions (Fig. 3A and fig. S1A). Thus, each variable can be 
estimated from the other. Figure 3B gives examples of the general case i. 

Notice that as the strength of coupling increases, information be-
comes more distinct in the affected variables. As a result, manifolds built 
from time series of the affected variables will contain stronger historical 
signatures of the causes. In Fig. 1 (Eq. 1), for example, where βy,x >> βx,y 
the much stronger effect of species X on species Y implies faster conver-
gence for predicting species X than species Y (Fig. 3A). Thus, all things 

equal, the relative skill of cross mapping can indicate the relative magni-
tude of causative effect (Fig. 3B). 

Framework for identifying causation, case ii: Unidirectional 
causality. Here species X influences the dynamics of Y, but species Y 
has no effect on X (Fig. 3C, fig. S1B, and box S1). This could describe 
an amensal or comensal relationship, or where X represents external 
environmental forcing. 

Figure 3C examines the system (1) when βx,y = 0. Note that with 
moderately strong forcing (from βy,x), even though βx,y = 0 there may still 
be partial cross mapping of Y arising from the contemporaneous depend-
ence of Y on X. However, this statistical effect is not convergent (shown 
by the asymptotic level curves with respect to L in Fig. 3E). With ex-
tremely strong forcing, the intrinsic dynamics of the forced variable can 
become subordinate to the forcing variable, leading to the well-studied 
phenomenon of “synchrony” (27). The red plateau in Fig. 3E shows that 
bidirectional convergence can occur with strong forcing. Thus, strong 
forcing (synchrony) must be ruled out for CCM to unequivocally imply 
bidirectional coupling, though it still implies membership to a common 
dynamic system. 

Transitivity. Note that causation is transitive (eg., if foxes prey on 
rabbits, and rabbits eat grass, then foxes and grass are causally linked). 
More formally, X ⇔ Y ⇔ Z implies X ⇔ Z, whether or not X and Z in-
teract directly. Similarly, for unidirectional forcing, X ⇒ Y and Y ⇒ Z, 
implies X ⇒ Z. Transitivity provides the basis for extending CCM to 
larger interaction networks, enabling us to distinguish variables that are 
coupled from those sharing a common driver. This is illustrated with two 
model examples below. 

Complex model examples: External forcing of non-coupled vari-
ables. Consider the case where two species, X and Y, do not interact, but 
are both moderately forced by a common environmental variable Z (Ex-
ample 1 schematic in Fig. 4A). This occurs commonly in ecological 
systems [the Moran effect (23)] and is a case that remains problematic in 
studies of causation. Here we expect cross mapping between species X 
and Y to fail because there is no information flow between variables, 
although information about the external forcing variable (Z) should still 
be recoverable from X and Y. 

In fisheries for example, non-interacting populations with common 
peak recruitment years due to favorable environmental conditions may 
be correlated even though they do not interact. The simple fisheries 
model in Fig. 4B illustrates this situation (26), where although the signif-
icant cross correlation between species suggests that they might be cou-
pled, cross mapping shows no evidence of convergence, proving that 
they are not coupled. This example demonstrates that the method can 
distinguish coupled dynamics from a simple correlation produced by 
shared driving variables. 

Figure 4C provides an interesting further illustration of the method 
with a more complex five-species model [schematic in Fig. 4A, model 
details in (26)]. In this example, species 1, 2, and 3 represent a mutually 
interacting guild that externally force species 4 and 5, while 4 and 5 do 
not influence any other species. Species 1, 2, and 3 are akin to Z in the 
discussion above, with 4 and 5 akin to the externally forced non-coupled 
pair X and Y. Figure 4C shows that CCM is able to deduce the correct 
network of interactions getting all bidirectional and unidirectional links 
correct (as well as their relative magnitudes). 

Real world examples: Demonstration with ecological data. Keep 
in mind that attractors constructed from real data are approximations of 
dynamics occurring in higher dimensions. Thus, although observational 
error and process noise will limit the level of convergence attainable, 
low dimensional approximations can still produce significant cross map 
estimates of causal effects. 

Bidirectional causation in an experimental predator-prey system. 
We apply the analysis to time series from the classic experimental preda-
tor-prey system, first studied in the 1920’s by Gause, involving 
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Didinium (predator) and Paramecium (prey), and later improved by 
Veilleux (28). Methodological details in (26). 

The results in Fig. 5A suggest bidirectional coupling (case i), which 
accords with what is known. Moreover, the higher level of skill in cross 
mapping Didinium from the Paramecium time series than the reverse 
(Fig. 5B) suggests stronger top-down control by the predator, Didinium, 
than bottom-up control by the prey, Paramecium. This finding is con-
sistent with the experimental protocol and illustrates asymmetrical bidi-
rectional coupling (case i). 

Complex causation in the sardine-anchovy system. Here we examine 
the relationship between Pacific sardine (Sardinops sagax) landings, 
Northern anchovy (Engraulis mordax) landings, and sea-surface temper-
ature (SST) measured at Scripps Pier and Newport Pier (Fig. 5C). 

Competing hypotheses have been advanced to explain the pattern of 
alternating dominance of sardine and anchovy across global fisheries on 
multidecadal time scales. While the observed reciprocal abundance lev-
els (Fig. 5A) resonates with ecological competition as an underlying 
mechanism, global synchrony in sardine and anchovy stanzas (29) sug-
gests the operation of large-scale environmental forcing coupled with 
species-specific differences in optimal temperature levels. Recent evi-
dence of regime-like behavior in these systems suggests the operation of 
nonlinear processes (10). 

Similar to the global pattern, in California, 20th century landings of 
Pacific sardine (Sardinops sagax) and Northern anchovy (Engraulis 
mordax) show one population peaking when the other is depressed. 
While Murphy and Isaacs (30) hypothesized that the species act in direct 
competition, Lasker and MacCall (31) argued that the species react dif-
ferently to common large-scale environmental forcing. Moreover, paleo-
ecological time series based on fish scales preserved in the anoxic sedi-
ments of the Santa Barbara basin revealed that the negative cross-
correlation witnessed in the 20th century disappears in these longer time 
series (32). Correlation with environmental factors has also been elusive. 
Jacobson and MacCall (33) detected correlation between three-year run-
ning averages of the Scripps Pier sea surface temperature (SST) and 
sardine recruitment and spawning stock size using two approaches (a 
generalized additive model and a linearized Ricker stock-recruitment 
model with environmental terms). However, when the analysis was ex-
panded to include recent stock assessments from 1992-2009, the rela-
tionships vanished (34). Though there are many possible explanations, 
such changes in correlation across different periods are consistent with 
nonlinear dynamics and mirage correlation. 

We address this controversy using the same analytical protocol used 
for the Didinium-Paramecium example (26). The results in Fig. 5D show 
no significant cross-map signal between sardine and anchovy landings, 
indicating that sardines and anchovies do not interact (are not dynami-
cally coupled). In addition, as expected, there is no detectable signature 
from either sardine or anchovy in the temperature manifold– obviously 
neither sardines nor anchovies affect SST. However there is significant 
asymmetric CCM between sardines and SST as well as between ancho-
vies and SST (Fig. 5, E and F), meaning that temperature information is 
encoded in both fishery time series. The recoverable temperature signa-
ture reveals a weak coupling of temperature to sardines and anchovies. 
Thus, although sardines and anchovies are not actually interacting they 
are weakly forced by a common environmental driver, for which tem-
perature is at least a viable proxy. Note that because of transitivity, tem-
perature may be a proxy for a group of driving variables (i.e., 
temperature may not be the most proximate environmental driver). Our 
finding that SST influences sardine (Fig. 5, E and F) is consistent with 
earlier findings of Jacobson and MacCall (33). Supporting evidence with 
other fishery-independent data are provided in the supplementary text 
(figs. S3 and S4). 

Finally, it is important to note that the measurable nonlinear cou-
pling of temperature to sardines stocks, means that the effect of tempera-

ture varies with system state. Therefore, contrary to the current regulato-
ry framework for sardines, a fixed temperature index will not suffice for 
sound management decisions. Rather a dynamic (state-dependent) rule 
involving temperature is required. 

Final remarks on nonseparability. One of the fundamental ideas in 
this work is that when causation is unilateral, X ⇒ Y (X drives Y as in 
case ii), then it is possible to estimate X from Y, but not Y from X. This 
runs counter to intuition (and GC), and suggests that if the weather 
drives fish populations, for example, we can use fish to predict the 
weather but not vice versa. 

To further clarify how this works, consider the 2-species logistic 
model described earlier (Eq. 1). We can recover the cross map dynamics 
algebraically by rearranging Eq. 1 to give expressions for Y(t) and X(t), 
substituting these back into Eq. 1, and solving for X(t) in terms of Y(t) 
and Y(t – 1) (and vice versa, see the worked example in box S1). 

The parameter βx,y governs the sensitivity of X to changes in Y. As 
βx,y approaches 0, X drives Y unidirectionally and the cross map estimate 
of X remains well-behaved. But the cross map model for Y has a singu-
larity when βx,y = 0. Hence, cross mapping allows the driver to be recon-
structed from the driven variable, but not the other way around. 

Finally, because Eq. 1 can be algebraically rearranged as a model for 
X(t + 1) purely in terms of X(t) and X(t – 1), the information from Y be-
comes redundant and can be removed without affecting our ability to 
predict X(t + 1). Thus, GC would suggest (incorrectly!) that Y does not 
cause X (see GC calculation S1). 

Summary. Despite the fundamental problems raised in Berkeley’s 
1710 “A treatise on principles of human knowledge,” (1) correlation 
remains the analytical standard of modern science. This has become 
more difficult to justify with increasing recognition that nonlinear dy-
namics are ubiquitous. Apparent relationships among variables can 
switch spontaneously in nonlinear systems due to mirage correlations or 
a threshold change in regime, and correlation can lead to incorrect and 
contradictory hypotheses. Growing recognition of the prevalence and 
importance of nonlinear behavior calls for a better criterion for evaluat-
ing causation where experimental manipulation is not possible. 

Granger causality addresses Berkeley’s issues by using prediction ra-
ther than correlation as the criterion for causation in time series. This 
idea assumes that causes can be separated from effects, so that a variable 
is identified as causative if prediction skill declines when that variable is 
removed. This is a powerful idea for separable linear systems (especially 
purely stochastic systems); however it is not defined for all systems, and 
in particular not for general nonlinear dynamic systems where Takens’ 
Theorem applies (19, 20). To address these systems, we examine an 
approach that exploits non-separability by using CCM to test for mem-
bership to a common dynamical system. CCM is not a method compet-
ing with GC, but deals with a class of system often found in ecological 
study where GC is simply not applicable. Thus it is not surprising that as 
a further check, the GC calculations for all the model and real data ex-
amples considered in this work were largely unsuccessful (table S2 and 
GC calculations S1 to S5). 

Although many empirical measures of species interactions exist 
(e.g., inferring interaction proxies from diet matrices), we suggest that 
causation inferred from time series information provides a “bottom-line” 
picture of interactions that is more direct than those possible with prox-
ies. The ability to resolve causal networks from their dynamical behavior 
has implications for system identification and ecosystem based man-
agement, particularly where it is important to know which species inter-
act as a group and need to be considered together. In resource 
management as elsewhere, accurate knowledge of the causal network 
can be essential for avoiding unforeseen consequences of regulatory 
actions. 
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Fig. 1. Mirage correlations. (A to C) 
Three samples from a single run of 
a coupled 2-species nonlinear 
logistic difference system with 
chaotic dynamics. Variables X 
(blue) and Y (red) appear correlated 
in the first time segment (A), anti-
correlated in the second time 
segment (B), and lose all 
coherence in the third time segment 
(C) with alternating interspersed 
periods of positive, negative, and 
zero correlation. Although the 
system is deterministic and 
dynamically coupled, there is no 
long-term correlation (n = 1000, ρ = 
0.0054, p = 0.864). 

Fig. 2. Convergent cross mapping tests for correspondence between shadow manifolds. This example based on the canonical 
Lorenz system (a coupled system in X, Y, and Z; eq. S7 without V) shows the attractor manifold for the original system (M) and 
two shadow manifolds, MX and MY, constructed using lagged-coordinate embeddings of X and Y, respectively (lag = τ). Because 
X and Y are dynamically coupled, points that are nearby on MX (e.g., within the red ellipse) will correspond temporally to points 
that are nearby on MY (e.g., within the green circle). That is, the points inside the red ellipse and green circle will have 
corresponding time indices (values for t). This enables us to estimate states across manifolds using Y to estimate the state of X 
and vice-versa using nearest neighbors (3). More specifically, the time indices (the values for the t’s) of the neighboring points of 
y(t) on MY are used to identify the nearest neighbors of target point x(t) on MX, and these are then averaged to estimate x(t). 
With longer time series, the shadow manifolds become denser, and the neighborhoods (ellipses of nearest neighbors) shrink, 
allowing more precise cross map estimates (see movies S1 to S3). 
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Fig. 3. Detecting causation with convergent cross mapping. (A) Relative convergence rates for cross mapping for the system in 
Fig. 1 where βy,x >> βx,y > 0. The correlation coefficient (ρ) indicates the skill of cross map estimates. With time series (libraries) 
of similar length, L, cross mapping of Y using MX, [ Ŷ (t)|MX], is stronger than cross mapping of X using MY, [ X̂ (t)|MY)]. (B) 
Summary of this effect in general for Eq. 1. In the lower right corner where βx,y > βy,x, red regions indicate that the cross mapping 
of Y is stronger than the cross mapping of X: ρ[ Ŷ (t)|MX] > ρ[ X̂ (t)|MY]. (C) In the extreme case where βx,y = 0, Y (red) has no 
effect on X (blue), thus cross mapping of Y using MX fails (ρ = 0.0). (D) Cross mapping of X succeeds because past values of Y 
contain an imprint of the dynamics of X. Thus, X ⇒ Y. (E) Demonstration of the non-convergence of Ŷ (t)|MX as a function of 
forcing strength, βx,y. Although partial predictability can occur when βx,y = 0, this does not converge. Convergence only occurs as 
a special case if strong forcing causes the system to collapse dimensionality (dark red plateau at high βx,y), making X and Y 
observation functions of the same forcing subsystem. 

Fig. 4. Model causal networks. 
(A) Schematics of causal 
networks: two base cases and 
two model examples showing 
external forcing of non-coupled 
variables. (B) Cross mapping 
results for example 1: external 
forcing of non-coupled 
variables. Cross-correlation 
erroneously suggests that X and 
Y are interacting, whereas cross 
mapping correctly shows that 
there is no interaction. (C) Cross 
mapping results for the complex 
five-species model example. All 
significant (p < 0.05) mappings 
are given and indicate that 
species 1, 2, 3 (the subsystem 
in the circle) all interact mutually 
(case i), but only interact 
asymmetrically as external 
forcing variables with respect to 
4 and 5 (case ii), which do not 
interact directly themselves. 
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Fig. 5. Detecting causation in real time series. (A) Abundance time series of Paramecium aurelia and Didinium nasutum as 
reported in (28). (B) Convergent cross mapping of Paramecium and Didinium with increasing time series length L. The 
pattern suggests top-down predator-control. (C) California landings of Pacific sardine (Sardinos sagax) and northern 
anchovy (Engraulis mordax). (D to F) Convergent cross mapping (or lack thereof) of sardine vs. anchovy, sardine vs. SST 
(Scripps Pier), and anchovy vs. SST (Newport Pier), respectively. This shows that sardines do not interact with each other, 
but both are forced by temperature. 
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