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Abstract. State-space estimation methods are increasingly used in ecology to estimate
productivity and abundance of natural populations while accounting for variability in both
population dynamics and measurement processes. However, functional forms for population
dynamics and density dependence often will not match the true biological process, and this
may degrade the performance of state-space methods. We therefore developed a Bayesian
semiparametric state-space model, which uses a Gaussian process (GP) to approximate the
population growth function. This offers two benefits for population modeling. First, it allows
data to update a specified ‘‘prior’’ on the population growth function, while reverting to this
prior when data are uninformative. Second, it allows variability in population dynamics to be
decomposed into random errors around the population growth function (‘‘process error’’) and
errors due to the mismatch between the specified prior and estimated growth function (‘‘model
error’’). We used simulation modeling to illustrate the utility of GP methods in state-space
population dynamics models. Results confirmed that the GP model performs similarly to a
conventional state-space model when either (1) the prior matches the true process or (2) data
are relatively uninformative. However, GP methods improve estimates of the population
growth function when the function is misspecified. Results also demonstrated that the
estimated magnitude of ‘‘model error’’ can be used to distinguish cases of model
misspecification. We conclude with a discussion of the prospects for GP methods in other
state-space models, including age and length-structured, meta-analytic, and individual-
movement models.

Key words: Bayesian models; Gaussian process; model misspecification; population dynamics model;
semiparametric models; state-space models.

INTRODUCTION

Predicting population growth is one of the pillars of

applied ecology. Models of population growth have

many implications for conservation and management;

among other things, they are used to determine

estimates of extinction risk (Ginzburg et al. 2005) and

harvest rates for exploited populations (Quinn and

Deriso 1999). However, although numerous population

models have been developed, observed population

growth may not clearly follow any single parametric

model across all species (Thorson et al. 2012). This is

particularly problematic because conservation and

management strategies may be quite sensitive to model

choice (Harwood and Stokes 2003).

Several authors have used methods that do not specify

a parametric relationship between predictive and re-

sponse variables (i.e., nonparametric methods) to

address this uncertainty in model specification (Jost

and Ellner 2000, Wood and Augustin 2002, Munch et al.

2005). Nonparametric methods are capable of capturing

a wide range of functional forms and consequently are a

robust tool for modeling population growth. However,

most of the previously developed nonparametric meth-

ods assume that population data are observed without

error or confound different sources of uncertainty.

State-space versions of population models have been

developed to account for sampling imprecision (Har-

wood and Stokes 2003, Royle and Dorazio 2008, Knape

and de Valpine 2012), and outperform simpler estima-

tion methods in many cases (de Valpine and Hastings

2002, Punt 2003, Staples et al. 2004). State-space

methods separately estimate variance in the measure-

ment process (due, for example, to small sample sizes for

the index of abundance), and variance in the population

growth process (due, for example, to demographic

stochasticity [Lande et al. 2003] and environmental

variability). However, state-space population models are

likely to be sensitive to any misspecification of the

population growth function (Calder et al. 2003) or other

model misspecifications, e.g., failing to account for
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competitive effects (Walters and Kitchell 2001) or eco-

evolutionary changes in individual characteristics

(Smallegange and Coulson 2012). Intuitively, errors in

model specification must be accounted for by elevated

estimates of process and observation variance, which

(among other things) may lead to biased estimates of

extinction risk (Staples et al. 2004, Ginzburg et al. 2005).

Thus, there is a clear need to develop a unified

framework to identify and account for uncertainty in

model specification, process uncertainty, and observa-

tion uncertainty in population modeling (Harwood and

Stokes 2003). Although the literature on nonparametric

time series analysis is substantial (see e.g., Gao 2007),

relatively little has been done on semiparametric

inference in a state-space context. Here we adopt a

Bayesian view by specifying a flexible prior on the

population growth function rather than a specific

parametric function (Munch et al. 2005). Bayesian

estimates of functions have not been incorporated into

state-space models in the ecological literature, and their

performance in these circumstances is unknown.

Here, we use simulated data to demonstrate that

Bayesian estimates of functions in state-space models

can generically provide two benefits for population

dynamics models. First, they allow data to update the

assumed prior for the population growth functions.

Second, they allow estimation of the relative magnitude

of process and model errors. We conclude by discussing

the prospects for Bayesian estimates of functions in

other state-space ecological contexts such as models of

early juvenile survival or individual movement.

METHODS

Population growth models

Models approximating population growth can be

estimated using an index of abundance and optionally a

time series of known mortality, i.e., harvest. When a

relative index of abundance is available (which is

proportional to abundance up to a fixed but unknown

value called the ‘‘detectability coefficient’’), population

growth models use harvest time series data to estimate

the detectability coefficient. In such models, a decrease

in abundance that coincides with high harvest indicates

that harvest is probably a nontrivial proportion of total

abundance, and therefore gives information about the

absolute scale of abundance, i.e., the detectability

coefficient. Alternatively, population growth models

can be fitted to abundance time series in the absence

of harvest data when an absolute index of abundance is

available, i.e., the detectability coefficient is known (e.g.,

Knape and de Valpine 2012). Population growth models

can also be estimated using only a relative index of

abundance (when information about absolute popula-

tion biomass is not sought), or using auxiliary informa-

tion on demographic rates (when this is available),

although we do not here consider these latter two model

types.

We begin by modeling a population subject to density

dependence and process uncertainty which can be

represented by

Btþ1 ¼
�

Bt þ f ðBtÞ � Ct

�
eet ð1Þ

where f (�) represents population growth at population

size Bt (either numbers or biomass), Ct is an element

in the vector C representing catches (deaths from

known sources of mortality, i.e., harvest, which may

be zero), and the total variability in the population

growth process et in year t is assumed to be

independent from other years and normally distribut-

ed with a constant variance r2
e , i.e., et ; N(�r2

e/2,r
2
e).

Factors not explicitly modeled in the parametric

growth function f (�), for example, environmental

stochasticity, underlie the residual process uncertainty

et (Lande et al. 2003), which includes a bias-correction

term such that f (�) represents the mean growth

function rather than the median. We recognize that

variability might be state-dependent, but for simplicity

of presentation we retain this homoscedastic assump-

tion throughout.

A parametric population growth function is conven-

tionally specified for f (�) to predict population growth as

a function of population size. A common growth

function for f (�) in ecology is the theta-logistic model,

which is similar to the Pella-Tomlinson function in

fisheries (Quinn and Deriso 1999). Our parameterization

of the Pella-Tomlinson function includes two parame-

ters: K representing positive abundance at which

population growth is expected to be zero, and Y

representing maximum population growth (although

we re-parameterize for computational reasons using a,
defined as the ratio of cY/K, where c is defined in Eq. 3).

The Pella-Tomlinson function also included a shape

parameter u that determines the ratio of abundance at

maximum population growth to equilibrium abundance

(BY/K ):

f ðBtÞ ¼ aBt � aK
Bt

K

� �u

ð2Þ

where c is derived from the Pella-Tomlinson shape

parameter,

c ¼ uu=u�1

u� 1
: ð3Þ

Recent research suggests that BY/K has a mean of

;40% for many fish species (Thorson et al. 2012). To

provide a specific simulation example, we therefore

specify by default the u corresponding to BY/K ¼ 0.4.

However, we note that the following simulation

comparison could be applied to many other population

growth functions.

In a state-space framework, we explicitly recognize

that the observed population sizes are imprecise. Here,

we assume that the available index data I (where I is a

JAMES T. THORSON ET AL.330 Ecology, Vol. 95, No. 2



vector) are noisy measurements which are roughly

proportional to the actual population size:

It ¼ qBte
st ð4Þ

where q is the detectability coefficient (a proportion-

ality constant representing the fraction of the popu-

lation observed) and the observation errors st are

assumed to be independent and normally distributed,

i.e., st ; N(�r2
t /2, r2

t ), where s is the vector of st for
all years from 1 to the final year T. Measurement

errors are specified as independent due to the

presumed independence of sampling errors (e.g.,

sampling variance from a survey that generates the

index I is independent each year), and as having an

approximately constant log(standard deviation), as is

commonly observed in fishery indices (Thorson and

Ward 2013).

In the parametric state-space model (which we

hereafter refer to as the ‘‘conventional’’ approach), we

assume that the growth function f (�) is known without

error and we try to estimate model parameters (K, a, Bt,

q, r2
e , r2

t ) using the information from the index of

abundance and optionally harvest. This state-space

model requires integration across states Bt, as frequently

accomplished using particle filters or Markov chain

Monte Carlo (as explained later).

The Bayesian approach to model misspecification

In the Bayesian approach to estimating the popu-

lation growth function, we relax the assumption that

the dynamics are, on average, correctly described by

Eq. 1. To do so, we partition et in Eq. 1 into

components z(bt) þ gt, where gt is uncorrelated

process noise with mean 0 and variance r2
p. The

function z(bt) is an unknown function that allows for

persistent, smooth departures from the assumed model

structure, and that hence approximates the difference

between true dynamics and the putative population

growth function. As is standard in Bayesian statistics,

we assign z a prior distribution representing what we

know, and we use the available data to update this

distribution. One possible prior for z that is flexible

and computationally feasible is a Gaussian process

(which we hereafter refer to as the ‘‘GP’’ approach;

Rasmussen and Williams 2006). GPs have been used

widely in spatial ecology under the guise of Kriging

(Banerjee et al. 2003) and have since been applied to

modeling density dependence (Munch et al. 2005),

detecting Allee effects (Sugeno and Munch 2013), and

determining seasonal variation in growth potential

(Sigourney et al. 2012). An obvious alternative would

be to model z using a basis expansion (spline, Fourier,

and so forth), as is commonly done in generalized

additive models (Wood and Augustin 2002). These

approaches are dual in the sense that specifying a

basis implies a covariance function, while specifying a

covariance function implies a basis expansion (Ras-

mussen and Williams 2006). We adopt the GP

perspective because it allows for relatively straightfor-

ward incorporation of biological information (via the

parametric prior) and a priori control of wiggliness in

the population growth function.

The GP is specified in terms of a mean function l(b),
which gives the predicted population growth for any

hypothetical abundance b, and a covariance function

C(b,b0), which gives the covariance of deviations away

from the mean function for abundance b and b0. Because

b and b0 can be any continuous values for abundance,

the GP can be interpreted as a continuous generalization

of a multivariate normal distribution. This specification

is written succinctly as

z ; GPðl;CÞ: ð5Þ

We set the prior mean to zero, l(b) ¼ 0, reflecting

the fact that we do not have prior information on

systematic deviations from the putative model (if we

did, we would modify Eqs. 1 and 2). We here assume

that the average distance between the mean function

l(b) and the true but unknown function f (b) is

approximately constant for all b; in other words, that

the variance of z(b) is the same for all b (where this

assumption could be further explored in a real-world

application). In the case of constant variance for z(b),

we can rewrite C(b,b 0) as r2
mR(b,b

0), where r2
m is the

variance in z, and R is the correlation among

departures from the putative model for abundance

levels b and b0. The choice of correlation function

controls whether departures are differentiable and the

length scale over which they become independent. We

assume a squared-exponential correlation function:

Rðb; b 0Þ ¼ exp �ðb� b 0Þ2

2kK

 !
ð6Þ

where k controls the degree of wiggliness in the

estimated population growth function, and where K is

included in the denominator so that k is defined as

proportion of K. We note that other correlation

functions are also possible in a Gaussian process, but

the squared-exponential correlation is continuous and

infinitely differentiable, similar to most previously

developed growth functions.

In the present application, we are interested in

quantifying the error arising from model misspecifica-

tion. Since the covariance function r2
mRðb; b 0Þ controls

deviations from the putative model, we expect the

variance r2
m of deviations to go to 0 in the case when

the putative model is correct. However, to retain

consistency with Eq. 1, the total error variance must

be the same. That is, r2
e ¼ r2

m þ r2
p (recall that r2

p is the

variance of uncorrelated errors). To facilitate quantify-

ing the relative importance of independent process error

and model misspecification errors, we introduce a new

parameter, h ¼ r2
m/r

2
e . Using this parameterization, we

rewrite the covariance for e as follows:
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Cðb; b 0Þ ¼ r2
e h exp �ðb� b 0Þ2

2kK

 !
þ ð1� hÞdb�b 0

" #
ð7Þ

where db�b0¼ 1 if b¼ b0 and db�b0¼ 0 otherwise. The first

term in the parentheses in the right-hand side of Eq. 7

represents model error, and the second represents

residual process variability. In this parameterization, h
represents the fraction of the total uncertainty in state

transitions resulting from model misspecification. When

the putative model is sufficiently close to the true growth

function, we expect h to approach 0. This suggests a

straightforward test for model misspecification using a

comparison between the performance of models with h¼
0 and h free. We also note that, when h ¼ 0, the GP

model reduces to the conventional model because model

variance r2
m is 0, and thus the et’s are uncorrelated.

To estimate parameters for the GP model, we collect

all of the realized process variability in a vector e¼ fe1,
. . . , eT�1g> and the population sizes in a vector b¼fB1,

. . . , B T�1g>, where subscript T represents the number of

years of data. Given the specification in Eqs. 1 and 5,

this is equivalent to multivariate normal distribution for

e given b:

e ; N �r2
e

2
1; Cðb; bTÞ

� �
ð8Þ

where C(b,bT) is the covariance matrix constructed using

Eq. 7, i.e., the i and jth element of C(b,bT) is Eq. 7

evaluated at population sizes bi, bj. The vector of 1’s (1)

has length T� 1, where T is the number of years of data.

Calculating the Gaussian process growth function

After fitting the GP model to data, we can visualize

systematic departures from the putative model by

examining the posterior mean of z(b). However, it is

easier to interpret the modified growth function, ~f (b),
defined such that the average dynamics in Eq. 1 are

correct when f (b) is replaced by ~f (b). The posterior

estimate of this population growth function ~f (b) can be

computed for any hypothetical biomass b*. Thus, ~f can

be visualized by computing ~f (b*) for a large number of

different b* values and subsequently plotting ~f (b*)
against b* for all values. This process is similar for a

geostatistical model, where the estimate of an interpo-

lated surface is visualized by estimating its value at all

locations on a grid and then plotting that grid (Banerjee

et al. 2003). Given the preceding model specification,

f̂ (b*) is computed using the estimates arising from the

parametric prior f̂ (b*), given estimates of a and K, as

well as the vector of process errors e:

~f ðb�Þ ¼
�

b� þ f̂ ðb�Þ
�

e~zðb �Þ � b� ð9Þ

where ~z(b*) is the posterior mean deviation from the

putative model at hypothetical abundance b*, and f̂ (b*)
is calculated from the posteriors distribution of a and K

(Eq. 2). Here, ~z(b*) is calculated as a weighted average of

the observed process errors:

ẑðb�Þ ¼
XT

t¼1

ðxtetÞ ð10Þ

where the vector of weights x (where element xt is the

weight given to process error in year t) is calculated

using the covariance among process errors, as well as the
covariance between observed errors and z(b):

x ¼ ½Cðb�; bTÞ � r2
eð1� hÞdb ��bT �Cðb; bTÞ�1 ð11Þ

where C(b*,bT) is the vector of covariances in z

evaluated between b* (a scalar representing a hypothet-

ical value for abundance) and vector b (representing
observed biomasses for all years B1 . . . BT. Here

C(b,bT)�1 is the inverse of the covariance matrix

obtained for the observed biomasses, i.e., the inverse
of the matrix in Eq. 8. These computations for ~z(b*) and
x are analogous to the steps used to calculate an
interpolated surface in geostatistics (Banerjee et al.

2003). Calculating ~f (b*) for various fixed values of b*

yields the estimate of population growth function, i.e.,
an estimate of population growth that is conditioned on

the available data. Given that this is a Bayesian model

(and we have MCMC samples from the posterior for a,
K, e, and b), this calculation is repeated separately for

each MCMC sample, and the mean ~f is reported.

Model estimation

Both conventional and GP models were estimated
using Bayesian methods. This required specifying priors

for all estimated parameters. The detectability coeffi-

cient was given a reciprocal prior, i.e., Pr(q) } 1/q (which
is the Jeffrey’s prior for q, given lognormal measurement

errors as per Eq. 4; see Millar 2002). This prior
specification is identical to assuming a uniform prior

on ln(q) and reflects the fact that q must be positive. As

Jaynes (1968) indicates, this is the minimally informative
prior that is invariant to a change of scale (i.e., q0 ! aq).

Following conventional practice, K and Y were given

uniform priors. We integrated across states ln(b) rather
than process variability e, because this parameterization

has smaller correlations between ln(Bt) and ln(Btþ2) than
would exist between et and etþ2, and thus improves

subsequent MCMC mixing. Here, B1 was fixed at K (the

population was assumed to start at its equilibrium level),
both for simplicity of presentation and following Punt

(1992). Estimation of both process and observation

uncertainties is one of the great challenges in state-space
modeling. Typically some prior information is required

to separate them and authors have used a variety of
devices to do so, including fixing the process noise at

some small value (West and Harrison 1997), obtaining

an estimate of the observation error from repeated
measurements (e.g., Sigourney et al. 2012), or fixing the

ratio (Ono et al. 2012). Here, we assigned a joint prior

for rs and re that is marginally uniform on [0,‘) for
both parameters, as is conventionally done for random

effects (Gelman 2006), but with an informative prior on
their ratio. Specifically we assumed a lognormal prior on
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their ratio with log(mean) of 0 and log(standard

deviation) of 0.5. This specification retains some

flexibility in obtaining separate estimates of rs and re

while incorporating the prior belief that both process

variability and measurement errors are significant (see

Results and Appendix D for further discussion).

The ‘‘conventional’’ state-space model differs from the

GP model by stipulating that h¼ 0 (and hence causing k
to be irrelevant). This corresponds to the assumption

that there is no correlation among process errors, and

yields an estimated population growth function that is

identical to the prior function, i.e., the putative model

(by contrast, h 6¼ 0 implies that process errors are

correlated via the GP function). The GP requires priors

for two additional parameters. Here, h was given an

exponential prior bounded between 0 and 1, i.e., Pr(h) }

exp(�h/lh)/lh for all 0 , h , 1, where lh¼ 0.5, while the

wiggliness parameter k was given a lognormal prior with

log(mean) calculated as ln(0.2) and log(standard devia-

tion) of 1. These latter priors were chosen based on

simulating production curves from the prior (i.e.,

without reference to fitting any data), to verify that

they allowed for a generally unimodal population

growth function and assigns low prior weight to

biologically unreasonable population growth models

with multiple modes. This prior is analogous from a

frequentist standpoint to the wiggliness penalty ap-

proach widely used in fitting GAMs and other

nonparametric regression models (Wood and Augustin

2002). Importantly, this was done a priori and was not

modified to improve model performance in the simula-

tions. Future research could seek to develop informative

priors for these based on meta-analysis.

Markov chain Monte Carlo (MCMC) was used to

approximate the marginal posterior distribution for all

parameters. We used conventional algorithms and

convergence checks as outlined in the Appendix A.

Simulation testing

We used simulation modeling to compare the

performance of conventional and GP population

dynamics models. We show results for two basic

scenarios: absolute index and catch data.

The first scenario uses an absolute index of abundance

(i.e., q is known to equal 1). This is plausible for many

terrestrial populations, e.g., given distance sampling,

and can be used to estimate population growth in the

absence of known harvest data (Knape and de Valpine

2012). In these simulations, we assume that C¼ 0, where

C is known sources of mortality. In order to ensure that

the simulated trajectories exhibit some fluctuations (e.g.,

cycles or chaos) in the absence of noise, we select a

sufficiently high value of maximum growth (Y ). This

provides sufficient contrast in B to allow the parametric

methods to estimate productivity.

The second scenario uses a relative index of abun-

dance (i.e., q is freely estimated), such as catch data from

a trawl survey of a marine population. In this case, catch

is specified to deplete and then recover the population,

as is necessary to estimate population growth, given a

relative index and catch data (Hilborn and Walters

1991).

These scenarios are designed to achieve contrast in

biomass (so that scenarios are informative about

population growth for a variety of biomass levels), and

are chosen for illustration purposes. Exploratory anal-

ysis (not shown) confirmed that conventional and GP

models yield similar estimates of production for levels of

biomass that are not generated in the data.

We also show results for the following three levels of

error. In all cases, re ¼ rs, although previous research

has shown that the state-space formulation is robust to

different error ratios (Punt 2003, Ono et al. 2012).

(1) For low error, simulation errors were fixed at re¼
rs ¼ 0.05. This matches the level of errors assumed in

Ono et al. (2012), and represents a case where state-

space estimation methods are likely to perform well

when the assumed population growth function matches

the true data-generating process. (2) For moderate error,

simulation errors were fixed at re ¼ rs ¼ 0.10. (3) For

high error, simulation errors were fixed at re¼rs¼0.20.

This was used as an upper bound because preliminary

analysis showed that higher levels of error did not allow

an accurate estimate of model scale (i.e., q and K ) for

either the conventional or GP models, even when the

model was correctly specified. It has additionally been

used as an upper bound on errors in other state-space

model studies (e.g., de Valpine and Hastings 2002).

Finally, we explored four candidate population

growth functions (illustrated in Fig. 1), while specifying

that K ¼ 1 for each: the correct (matched) assumption,

high productivity, stable growth, and depensatory

growth.

Correct assumptions.—The Pella-Tomlinson function

was used to simulate the data given BY/K¼ 0.4 (i.e., the

average value for all marine fishes in Thorson et al.

2012), where this value of the shape parameter was also

assumed in the conventional model and in the paramet-

ric prior on the population growth function for the GP

model.

High productivity.—The Pella-Tomlinson function

was used to simulate data with BY/K¼ 0.26, the average

value for highly productive fishes (Clupeiformes) in

Thorson et al. (2012), while the conventional model and

the parametric prior for GP growth function used BY/K

¼ 0.40. This scenario matches the case where a species is

more productive than expected, and is included to

represent mild model misspecification, i.e., it could also

be dealt with by using a Pella-Tomlinson model where

the shape parameter is estimated.

Stable population growth.—An ad hoc population

growth function was formed by taking a power function

of the Pella-Tomlinson function where BY/K¼ 0.4. This

was intended to represent a case where population

growth is relatively stable for a wide range of
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abundance, while still accommodating a unimodal

growth function with a fixed carrying capacity:

f ðBtÞ ¼ signðB0 � BtÞ cY1=h Bt

K
� cY1=h Bt

K

� �u� �h

ð12Þ

where h ¼ 0.5.

Depensatory population growth.—A depensatory Pel-

la-Tomlinson model was used (R. Hilborn, personal

communication), combining the conventional Pella-Tom-

linson with the assumption that fewer female individuals

will encounter a mate at relatively lower population sizes

(Liermann and Hilborn 1997). Given the assumption of

random and infrequent encounters (i.e., a Poisson-

distributed number of encounters for each female), this

results in the following growth function:

f ðBtÞ ¼ cyBt � cyB0

Bt

K

� �u� �
1� exp lnð0:5Þ Br

t

Kr

� �� �
ð13Þ

where r is the degree of depensation, and B50 is the

abundance at which 50% of females encounter at least

one mate. We parameterized this function such that BY/

K¼ 0.55, r ¼ 3, and B50¼ 0.275.

For the ‘‘catch data’’ scenario, we specified that

maximum population growth Y¼ 0.4. For the ‘‘absolute

index’’ scenario, we chose a value for maximum

population growth (which varies among each combina-

tion of growth function and error level) that resulted in a

large contrast in biomass. Abundance trajectories are

shown in Appendix B.

We simulated 100 replicates for each combination of

two scenarios, three error magnitudes, and four

population growth functions. Abundance dynamics

were simulated using Eq. 1; the index of abundance

was simulated using Eq. 5, given q ¼ 1; and population

growth was simulated using Eqs. 6, 11, or 12. In each

replicate, we simulated 40 years of data. For the ‘‘catch

data’’ scenario, mortality due to harvest was absent,

increased, and subsequently decreased, and we iterative-

ly tuned C to achieve the condition that the lowest true

abundance is between 20% and 30% of true unfished

abundance, given a particular stochastic draw for s and

FIG. 1. Population growth functions that give population growth based on surplus production, y-axis) as a function of
abundance (based on biomass, x-axis), used for simulation testing of the semiparametric model for population growth, which
include (a) a Pella-Tomlinson function with BY/K ¼ 0.4; (b) a Pella-Tomlinson function with BY/K ¼ 0.26; (c) a ‘‘stable growth’’
function; and (d) a depensatory Pella-Tomlinson function, where BY/K is the ratio of abundance at maximum population growth to
equilibrium abundance. See Simulation testing for equations and parameter values.

JAMES T. THORSON ET AL.334 Ecology, Vol. 95, No. 2



e. This pattern of harvest mortality and abundance was

stipulated because population dynamics models with a

relative index require either a two-way trip in abundance

or an informative prior on maximum population growth

or the detectability coefficient to estimate the absolute

scale of the population. We opted for simplicity to forgo

any exploration of informative priors, while noting that

informative priors for population growth and detect-

ability can be feasibly generated (McAllister et al. 2001,

2010). Both the conventional and GP models were then

fitted to simulated data for each replicate.

RESULTS

Objective 1: Updating the parametric ‘‘prior’’

for the population growth function

We first demonstrate the performance of conventional

and GP models at estimating the population growth

function when it is correctly specified (i.e., it matches the

true data-generating process). If detectability is known

(Fig. 2, left column), the conventional and GP models

have a median estimate of the population growth

function that perfectly matches the true function for

FIG. 2. The true population growth function (black) and conventional (blue) and Gaussian process (red) estimates, showing the
median (solid line), 25–75% quantiles (heavy shading), and 5–95% quantiles (light shading) of the posterior medians for each
simulation replicate when correctly specifying the growth function, and either the absolute index (left column) or catch data
scenarios (right column). Variability in total process error re and observation error rs is low (0.05), medium (0.10), or high (0.20).
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all levels of error. This is as expected, given that the

conventional model and the GP prior mean perfectly

match the function used to simulate the data. In this case

of known detectability, increases in error increase the

width of the 90% simulation interval for the growth

function, but there is no visible difference in perfor-

mance between conventional and GP models. When

detectability is freely estimated (Fig. 2, right column),

conventional and GP still perform identically in their

estimates of the growth function. However, both models

have a positive bias in K estimates (i.e., the estimated

population growth function is stretched along the x-

axis) for moderate (re¼ rs¼ 0.10) and high (re¼ rs¼
0.20) variability. The performance of the credible

interval estimates follows a similar pattern for conven-

tional and GP models (Appendix C).

We next demonstrate the performance of convention-

al and GP models in the more interesting cases, i.e.,

when the assumed population growth function differs

from the true data-generating process. When detectabil-

ity is known (Fig. 3), this model misspecification for the

conventional model obviously causes the estimated

growth function to differ from the ‘‘true’’ model. By

contrast, the GP model adapts to approximate the true

FIG. 3. The true population growth function (black) and conventional (blue) and Gaussian process (red) estimates, showing the
median (solid line), 25–75% quantiles (heavy shading), and 5–95% quantiles (light shading) for each simulation replicate for the
absolute index scenario (i.e., assuming that the detectability coefficient q ¼ 1) given three possible mismatches for the growth
function (high productivity, stable or constant growth, and depensatory growth). Variability in re and rs is low (0.05), medium
(0.10), or high (0.20).
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function. For example, the GP model is able to estimate

the left-skew of the ‘‘high productivity’’ and the

depensation of the ‘‘depensatory’’ scenarios, given low

errors. However, the GP model more closely resembles

the conventional model when errors are high. When

detectability is estimated (Fig. 4), the model misspeci-

fication has a larger and more interesting effect on

model performance. This is easiest seen with the

depensatory model and low errors. In this case, the

conventional model has a very large and positive (þ200–
400%) bias in K estimates, and an associated negative

bias in detectability estimates. This occurs because the

misspecified parametric model cannot account for the

observed population dynamics. As a consequence, all

abundance changes are attributed to ‘‘process errors’’

while specifying that harvest has little effect on

abundance (i.e., that total abundance is much large

than catches). The depensatory and low-error scenario

also results in smaller but positive biases in K and

negative biases in detectability for the GP model. This

was unexpected and occurs because the ‘‘prior’’ for the

population growth function still exerts an influence over

FIG. 4. The true population growth function (black) and conventional (blue) and Gaussian process (red) estimates, showing the
median estimate across simulation replicates (solid line), 25–75% quantiles (heavy shading), and 5–95% quantiles (light shading) for
the catch data scenario (i.e., estimating q) given three possible mismatches for the growth function and low, medium, or high
variability in error, as in Fig. 3.
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the GP model, and is miscalibrated with regard to the

‘‘true’’ process. To accommodate this miscalibrated

prior on the population growth function, the model

systematically overestimates biomass and population

growth, and hence effectively stretches the estimated

population growth function by a fixed amount in both

the x- and y-axes. Nevertheless, the GP performs

significantly better at estimating the population growth

function, and results in only a þ50% bias in K while

largely replicating the ‘‘true’’ pattern of depensatory

population growth. As errors increase in magnitude, the

difference between conventional and GP models de-

creases, until they have very similar performance for the

depensatory function given high errors. A similar

pattern is seen in the other growth functions, where

the GP is able to replicate the general form of the growth

function given low errors, but barely differs from the

conventional model given large errors (i.e., when data

are less informative), and the credible interval estimates

also follow a similar pattern (Appendix C). Finally, a

comparison of prior and posterior values for variance

parameters shows the influence of the informative joint

prior on process and measurement error variances

(Appendix D).

Objective 2: Estimating the relative magnitude

of measurement, process, and model errors

We also seek to demonstrate the capacity of the GP to

distinguish between ‘‘process error’’ and ‘‘model errors’’

(as defined in the introduction). Posterior mean esti-

mates for the ‘‘absolute index’’ scenario (Fig. 5a) show

that the GP model is able to accurately estimate the true

value of measurement and process errors in all

configurations. Model errors (rm) have lower magnitude

than process errors when the population growth

function is correctly specified (left column), but have

FIG. 5. Boxplots (middle line, median estimate from simulated replicates; box, interquartile range from 25th to 75th percentile;
whiskers, furthest observation within 1.5 times the interquartile range from the median estimate; dots, estimates outside of the
whiskers) showing the posterior mean for model parameters (rs, measurement errors; rp, process errors; rm, model
misspecification errors; h, model error parameter) for conventional (white) and Gaussian process (gray) models, with the true
value indicated (heavy dashed black line), for the absolute index scenarios (panel a) or the catch data scenarios (panel b), where the
conventional model does not provide an estimate of rm and h and therefore these boxes are missing for the conventional model.
Variability in re and rs is low (0.05), medium (0.10), or high (0.20).
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greater magnitude than process errors when the model is

misspecified. Model errors have particularly large

magnitude, given the depensatory model (right-most

column of Fig. 5a), when model misspecification also

has the greatest impact on estimates of the growth

function. The model error parameter (h) is generally

close to its prior mean for the correctly specified model

and is substantially greater for other models. Posterior

mean estimates for the ‘‘catch data’’ scenario (Fig. 5b)

show the same patterns of measurement, process, and

model error estimates, although the model error

parameter h is closer to its prior mean (i.e., less

informed by the data) for the cases with high errors.

DISCUSSION

In this simulation evaluation study, Gaussian process

state-space models were robust to model misspecifica-

tion and performed as well or better than a conventional

state-space model. Their performance was especially

good when the levels of errors were low and when a time

series of absolute abundance was available. However,

the GP model was not free of bias, which increased with

the level of model misspecification and magnitude of

variability in the data. Nevertheless, the GP method

provided accurate estimates of both process and

measurement errors that could help users to infer the

potential bias in their estimate. Additionally, the GP

approach was able to evaluate the degree of mismatch

between the assumed process model and the observed

data by estimating the model misspecification error rm.

Although appealing in terms of performance, the GP

approach is more computationally demanding than the

state-space model. It both takes longer to run (due to the

matrix inversion necessary in Eq. 8) and cannot be

readily implemented in free software such as WinBugs or

JAGS (because the model cannot easily be implemented

as an acyclic graph). However, the Gaussian process

method can be extended to virtually any stochastic

process (i.e., where variability in the process is

estimated) if one can deal with these computational

difficulties, and the number of possible applications is

virtually infinite. We discuss for illustrative purposes

three potential applications in the following section.

As a first example, state-space estimation is used for

age- and/or length-structured population models (Gud-

mundsson and Gunnlaugsson 2012). In these cases,

FIG. 5. Continued.
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Gaussian process methods could be fruitfully applied

to the function representing density-dependent changes

in early juvenile survival, which typically drives

compensatory dynamics in these models. As one

example, recruitment in common fishery models (e.g.,

Methot and Wetzel 2013) is approximated using

deviations away from the function representing early

juvenile survival. These recruitment deviations are

generally stipulated to be independent and identically

distributed, but could also be distributed according to a

Gaussian process, in which predictions of future

recruitment would deviate from the specified prior

through their correlation with previously observed

recruitment (Munch et al. 2005).

Gaussian process methods could also improve the

many meta-analytic studies that are routinely done. For

example, meta-analysis has previously been applied to

estimating the presence or absence of depensation in

stock–recruit functions (Liermann and Hilborn 1997)

and the ratio between management targets and life

history parameters (Zhou et al. 2012). Such meta-

analysis may be more robust if conclusions are less

influenced by whatever parametric form is assumed a

priori, i.e., using a Gaussian process (Sugeno and

Munch 2013).

Finally, recent research has extended state-space

estimation methods to animal movement models (Jon-

sen et al. 2005, Patterson et al. 2008), while explicitly

accounting for individual-level differences. Covariates

are typically included using a linear function predicting

spatial behaviors. The functional form for covariates in

movement models could alternatively follow a Gaussian

process, and our results imply that failing to account for

model misspecification (e.g., in the link between

covariates and behaviors) may have an important and

complicated effect on inference for seemingly unrelated

model parameters.

We therefore propose that Gaussian process models

provide a conceptually unified and computationally

feasible approach to semiparametric models in general,

and have the potential to reduce bias in parameter

estimates for population models. Furthermore, we have

shown that Gaussian process models can diagnose the

degree of match between an assumed population model

and the observed data. For all of these reasons, we

believe that these methods can improve many types of

ecological models across a range of data availability or

parametric structure.
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SUPPLEMENTAL MATERIAL

Appendix A

Markov chain Monte Carlo methods (Ecological Archives E095-029-A1).

Appendix B

Abundance trajectories for simulated data (Ecological Archives E095-029-A2).

Appendix C

Credible interval estimates (Ecological Archives E095-029-A3).

Appendix D

Priors and posteriors for variance parameters (Ecological Archives E095-029-A4).
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